scholarly journals Viral tolerance in Aedes aegypti relies on the negative cooperativity between Toll5A and the cytokine ligand Spz1C

2021 ◽  
Author(s):  
Yoann Saucereau ◽  
Thomas H Wilson ◽  
Martin C. Moncrieffe ◽  
Steven W Hardwick ◽  
Dimitri Y Chirgadze ◽  
...  

A. aegypti has evolved to become an efficient vector of Dengue viruses among other arboviruses despite Toll-regulated infection levels. Interestingly, both Toll and its ligand Spaetzle (Spz) have undergone gene duplication in A. aegypti raising the possibility of neofunctionalization and mutualism to develop between arboviruses and mosquitoes. Here we present cryo-EM structures and biophysical characterisation of low affinity Toll5A-Spz1C complexes that display transient but specific interactions. Binding of the first ligand alters receptor-receptor interactions and promotes asymmetric contacts in the vicinity of the Z-loop in Toll5A. This conformation then restricts binding of a second ligand, while bridging the C termini that promote signalling. In contrast, increased receptor concentrations promote inactivating head-to-head receptor assemblies. We also found that Spz1C differs from orthologous and paralogous cytokines in their transcriptional responses upon A. aegypti Aag2 cell stimulation. Interestingly, Spz1C uniquely controls genes involved in innate immunity, lipid metabolism and tissue regeneration. Given the remarkable DENV-induced expression patterns of these proteins, our data rationalises how Spz1C upregulation might promote innate immunity in the midgut, and Toll5A upregulation, viral tolerance in the salivary glands.

2021 ◽  
Author(s):  
Monique Gangloff ◽  
Yoann Saucereau ◽  
Thomas Wilson ◽  
Matthew Tang ◽  
Martin Moncrieffe ◽  
...  

Abstract A. aegypti has evolved to become an efficient vector for arboviruses such as Dengue but the mechanisms of host-pathogen immune tolerance are unknown. Toll receptors and Spaetzle (Spz) ligands have undergone duplication raising the possibility of neofunctionalization and mutualism to develop between arboviruses and mosquitoes. Here we present cryo-EM structures and biophysical characterisation of low affinity Toll5A-Spz1C complexes that display transient but specific interactions. Binding of the first ligand alters receptor-receptor interactions and promotes asymmetric contacts in the vicinity of the Z-loop in Toll5A. This conformation then restricts binding of a second ligand, while temporarily bridging the C-termini that promote signalling. Increased receptor concentrations promote inactivating head-to-head receptor assemblies. Furthermore, the transcriptional signature of Spz1C differs from other Spz cytokines in the control of genes involved in innate immunity, lipid metabolism and tissue regeneration. Given the remarkable DENV-induced expression patterns of these proteins, our data rationalises how Spz1C upregulation might promote antimicrobial defence in the midgut, and Toll5A upregulation, viral tolerance in the salivary glands.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
D. Serrano ◽  
J. A. Crookshank ◽  
B. S. Morgan ◽  
R. W. Mueller ◽  
M.-F. Paré ◽  
...  

Abstract In a previous study we reported that prediabetic rats have a unique gene signature that was apparent even in neonates. Several of the changes we observed, including enhanced expression of pro-inflammatory genes and dysregulated UPR and metabolism genes were first observed in the liver followed by the pancreas. In the present study we investigated further early changes in hepatic innate immunity and metabolism in two models of type 1 diabetes (T1D), the BBdp rat and NOD mouse. There was a striking increase in lipid deposits in liver, particularly in neonatal BBdp rats, with a less striking but significant increase in neonatal NOD mice in association with dysregulated expression of lipid metabolism genes. This was associated with a decreased number of extramedullary hematopoietic clusters as well as CD68+ macrophages in the liver of both models. In addition, PPARɣ and phosphorylated AMPKα protein were decreased in neonatal BBdp rats. BBdp rats displayed decreased expression of antimicrobial genes in neonates and decreased M2 genes at 30 days. This suggests hepatic steatosis could be a common early feature in development of T1D that impacts metabolic homeostasis and tolerogenic phenotype in the prediabetic liver.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 330
Author(s):  
Hai Huang ◽  
Juan Du ◽  
Shang-Wei Li ◽  
Tao Gong

Coridius chinensis is a valuable medicinal insect resource in China. Previous studies have indicated that the antibacterial and anticancer effects of the C. chinensis extract mainly come from the active polypeptides. Lysozyme is an effective immune effector in insect innate immunity and usually has excellent bactericidal effects. There are two kinds of lysozymes in insects, c-type and i-type, which play an important role in innate immunity and intestinal digestion. Studying lysozyme in C. chinensis will be helpful to further explore the evolutionary relationship and functional differences among lysozymes of various species and to determine whether they have biological activity and medicinal value. In this study, a lysozyme CcLys2 was identified from C. chinensis. CcLys2 contains 223 amino acid residues, and possesses a typical domain of the c-type lysozyme and a putative catalytic site formed by two conserved residues Glu32 and Asp50. Phylogenetic analysis showed that CcLys2 belongs to the H-branch of the c-type lysozyme. The analysis of spatiotemporal expression patterns indicated that CcLys2 was mainly expressed in the fat body of C. chinensis adults and was highly expressed in the second- and fifth-instar nymphs. In addition, CcLys2 was significantly up-regulated after injecting and feeding bacteria. In the bacterial inhibition assay, it was found that CcLys2 had antibacterial activity against Gram-positive bacteria at a low pH. These results indicate that CcLys2 has muramidase activity, involves in the innate immunity of C. chinensis, and is also closely related to the bacterial immune defense or digestive function of the intestine.


2019 ◽  
Vol 102 (2) ◽  
pp. 1725-1735 ◽  
Author(s):  
Yiwei Zhu ◽  
Guowen Liu ◽  
Xiliang Du ◽  
Zhen Shi ◽  
Meiyu Jin ◽  
...  

2016 ◽  
Vol 104 ◽  
pp. 30-39 ◽  
Author(s):  
Elda Dervishi ◽  
Guanshi Zhang ◽  
Dagnachew Hailemariam ◽  
Seyed Ali Goldansaz ◽  
Qilan Deng ◽  
...  

2021 ◽  
Author(s):  
Vasiliki Koutsouveli ◽  
David Balgoma ◽  
Antonia Checa ◽  
Mikael Hedeland ◽  
Ana Riesgo ◽  
...  

Abstract Background Sponges contain an astounding diversity of lipids which serve in several biological functions, including yolk formation in their oocytes and the embryos. On animal reproduction, lipids constitute one of the main energy storage forms for the adult and the offspring. The study of lipid metabolism during reproduction can provide information on food-web dynamics and energetic needs of the populations in their habitats, however, there are no studies focusing on the lipid metabolism of sponges during seasonal reproduction. The deep-sea sponge Phakellia ventilabrum (Demospongiae, Bubarida) is a key species of North-Atlantic sponge grounds, but its reproductive biology is not known. In this study, we used histological sections, lipidome profiling (UHPLC-MS), and transcriptomic analysis (RNA-seq) with goal to i. assess the reproductive strategy and seasonality of this species, ii. examine the relative changes in the lipidome signal, and the gene expression patterns (RNA-seq) of enzymes participating in lipid metabolism in female specimens during gametogenesis.Results P. ventilabrum is an oviparous and most certainly gonochoristic species, reproducing in May and September in the different studied areas. Half of specimens were reproducing, generating two to five oocytes per mm2. Oocytes accumulated both protein and lipid droplets. As oogenesis progressed, the signal of most of the unsaturated and monounsaturated triacylglycerides increased, as well as of few other phospholipids. Most of the other lipids and especially those with > 3 unsaturations showed a decrease in signal during the oocyte maturation. In parallel, we detected upregulated genes in female tissues related to triacylglyceride biosynthesis and others related to fatty acid beta-oxidation.Conclusions Triacylglycerides are probably the main type of lipid forming the yolk since this lipid category has the most marked changes, while some other phospholipids may also have a role in oogenesis. In parallel, other lipid categories were oxidized, leading to fatty acid beta-oxidation to cover the energy requirements of female individuals during oogenesis. Variations in the signal of most lipids between the different locations and months suggest that sponges, apart from their own mechanisms of lipid biosynthesis, exploit the food availability in their surroundings to cover the energetic demands in their physiological processes.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is one of the most popular cultivated fruit crops in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2019 ◽  
Author(s):  
Adelaide Tovar ◽  
Gregory J. Smith ◽  
Joseph M. Thomas ◽  
Jack R. Harkema ◽  
Samir N. P. Kelada

AbstractExposure to ambient ozone (O3) pollution causes airway inflammation, epithelial injury, and decreased lung function. Long-term exposure is associated with increased mortality and exacerbations of respiratory conditions. While the adverse health effects of O3 exposure have been thoroughly described, less is known about the molecular processes that drive these outcomes. The aim of this study was to describe the cellular and molecular alterations observed in murine airways after exposure to either 1 or 2 ppm O3. After exposing adult, female C57BL/6J mice to filtered air, 1 or 2 ppm O3 for 3 hours, we assessed hallmark responses including airway inflammatory cell counts, epithelial permeability, cytokine secretion, and morphological alterations of the large airways. Further, we performed RNA-seq to profile gene expression in two critical tissues involved in O3 responses: conducting airways (CA) and airway macrophages (AM). We observed a concentration-dependent increase in airway inflammation and injury, and a large number of genes were differentially expressed in both target tissues at both concentrations of O3. Genes that were differentially expressed in CA were generally associated with barrier function, detoxification processes, and cellular proliferation. The differentially expressed genes in AM were associated with innate immune signaling, cytokine production, and extracellular matrix remodeling. Overall, our study has described transcriptional responses to acute O3 exposure, revealing both shared and unique gene expression patterns across multiple concentrations of O3 and in two important O3-responsive tissues. These profiles provide broad mechanistic insight into pulmonary O3 toxicity, and reveal a variety of targets for refined follow-up studies.


2020 ◽  
Author(s):  
Xiya Zuo ◽  
Shixiang Wang ◽  
Wen Xiang ◽  
Huiru Yang ◽  
Muhammad Mobeen Tahir ◽  
...  

Abstract Background: Apple (Malus domestica Borkh.) is a popular cultivated fruit crop with high economic value in China. Apple floral transition is an important process but liable to be affected by various environmental factors. The 14-3-3 proteins are involved in regulating diverse biological processes in plants, and some 14-3-3 members play vital roles in flowering. However, little information was available about the 14-3-3 members in apple.Results: In the current study, we identified eighteen 14-3-3 gene family members from the apple genome database, designated MdGF14a to MdGF14r. The isoforms possess a conserved core region comprising nine antiparallel α-helices and divergent N and C termini. According to their structural and phylogenetic features, Md14-3-3 proteins could be classified into two major evolutionary branches, the epsilon (ɛ) group and the non-epsilon (non-ɛ) group. Moreover, expression profiles derived from transcriptome data and quantitative real-time reverse transcription PCR analysis showed diverse expression patterns of Md14-3-3 genes in various tissues and in response to different sugars and hormone treatments during the floral transition phase. Four Md14‑3-3 isoforms (MdGF14a, MdGF14d, MdGF14i, and MdGF14j) exhibiting prominent transcriptional responses to sugars and hormones were selected for further investigation. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments showed that the four Md14-3-3 proteins interact with key floral integrators, MdTFL1 (TERMINAL FLOWER1) and MdFT (FLOWERING LOCUS T). Subcellular localization of four selected Md14-3-3 proteins demonstrated their localization in both the cytoplasm and nucleus.Conclusion: We identified the Md14-3-3s family in apple comprehensively. Certain Md14-3-3 genes are expressed predominantly during the apple floral transition stage, and may participate in the regulation of flowering through association with flower control genes. Our results provide a preliminary framework for further investigation into the roles of Md14-3-3s in floral transition.


2021 ◽  
Vol 22 (23) ◽  
pp. 13005
Author(s):  
Tuo Zeng ◽  
Jia-Wen Li ◽  
Li Zhou ◽  
Zhi-Zhuo Xu ◽  
Jin-Jin Li ◽  
...  

Natural pyrethrins have been widely used as natural pesticides due to their low mammalian toxicity and environmental friendliness. Previous studies have mainly focused on Tanacetum cinerariifolium, which contains high levels of pyrethrins and volatile terpenes that play significant roles in plant defense and pollination. However, there is little information on T. coccineum due to its lower pyrethrin content and low commercial value. In this study, we measured the transcriptome and metabolites of the leaves (L), flower buds (S1), and fully blossomed flowers (S4) of T. coccineum. The results show that the expression of pyrethrins and precursor terpene backbone genes was low in the leaves, and then rapidly increased in the S1 stage before decreasing again in the S4 stage. The results also show that pyrethrins primarily accumulated at the S4 stage. However, the content of volatile terpenes was consistently low. This perhaps suggests that, despite T. coccineum and T. cinerariifolium having similar gene expression patterns and accumulation of pyrethrins, T. coccineum attracts pollinators via its large and colorful flowers rather than via inefficient and metabolically expensive volatile terpenes, as in T. cinerariifolium. This is the first instance of de novo transcriptome sequencing reported for T. coccineum. The present results could provide insights into pyrethrin biosynthetic pathways and will be helpful for further understanding how plants balance the cost–benefit relationship between plant defense and pollination.


Sign in / Sign up

Export Citation Format

Share Document