scholarly journals Dominant negative effects of SCN5A missense variants

2021 ◽  
Author(s):  
Matthew J O'Neill ◽  
Ayesha Muhammad ◽  
Bian Li ◽  
Yuko Wada ◽  
Lynn Hall ◽  
...  

Introduction: Up to 30% of patients with Brugada Syndrome (BrS) carry loss-of-function (LoF) variants in the cardiac sodium channel gene SCN5A. Recent studies have suggested that the SCN5A protein product NaV1.5 can form dimers and exert dominant negative effects. Methods: We identified 35 LoF variants (<10% peak current compared to wild type (WT)) and 15 partial LoF variants (10-50% peak current compared to WT) that we assessed for dominant negative behavior. SCN5A variants were studied in HEK293T cells alone or in heterozygous co-expression with WT SCN5A using automated patch clamp. To assess clinical risk, we compared the prevalence of dominant negative vs. putative haploinsufficient (frameshift/splice site) variants in a BrS case consortium and the gnomAD population database. Results: In heterozygous expression with WT, 32/35 LoF variants and 6/15 partial LoF showed reduction to <75% of WT-alone peak INa, demonstrating a dominant negative effect. Carriers of dominant negative LoF missense variants had an enriched disease burden compared to putative haploinsufficient variant carriers (2.7-fold enrichment in BrS cases, p=0.019). Conclusions: Most SCN5A missense LoF variants exert a dominant negative effect. Cohort analyses reveal that this class of variant confers an especially high burden of BrS.

Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Laura Dean Heckman ◽  
Maria H Chahrour ◽  
Huda Y Zoghbi

Loss of function of the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2) causes the progressive neurological disorder Rett syndrome (RTT). Conversely, duplication or triplication of Xq28 causes an equally wide-ranging progressive neurological disorder, MECP2 duplication syndrome, whose features overlap somewhat with RTT. To understand which MeCP2 functions cause toxicity in the duplication syndrome, we generated mouse models expressing endogenous Mecp2 along with a RTT-causing mutation in either the methyl-CpG binding domain (MBD) or the transcriptional repression domain (TRD). We determined that both the MBD and TRD must function for doubling MeCP2 to be toxic. Mutating the MBD reproduces the null phenotype and expressing the TRD mutant produces milder RTT phenotypes, yet both mutations are harmless when expressed with endogenous Mecp2. Surprisingly, mutating the TRD is more detrimental than deleting the entire C-terminus, indicating a dominant-negative effect on MeCP2 function, likely due to the disruption of a basic cluster.


2020 ◽  
Author(s):  
Szilvia Déri ◽  
János Borbás ◽  
Teodóra Hartai ◽  
Lidia Hategan ◽  
Beáta Csányi ◽  
...  

Abstract Aims Subunit interactions at the cytoplasmic domain interface (CD-I) have recently been shown to control gating in inward rectifier potassium channels. Here we report the novel KCNJ2 variant p.Glu293Lys that has been found in a patient with Andersen–Tawil syndrome type 1 (ATS1), causing amino acid substitution at the CD-I of the inward rectifier potassium channel subunit Kir2.1. Neither has the role of Glu293 in gating control been investigated nor has a pathogenic variant been described at this position. This study aimed to assess the involvement of Glu293 in CD-I subunit interactions and to establish the pathogenic role of the p.Glu293Lys variant in ATS1. Methods and results The p.Glu293Lys variant produced no current in homomeric form and showed dominant-negative effect over wild-type (WT) subunits. Immunocytochemical labelling showed the p.Glu293Lys subunits to distribute in the subsarcolemmal space. Salt bridge prediction indicated the presence of an intersubunit salt bridge network at the CD-I of Kir2.1, with the involvement of Glu293. Subunit interactions were studied by the NanoLuc® Binary Technology (NanoBiT) split reporter assay. Reporter constructs carrying NanoBiT tags on the intracellular termini produced no bioluminescent signal above background with the p.Glu293Lys variant in homomeric configuration and significantly reduced signals in cells co-expressing WT and p.Glu293Lys subunits simultaneously. Extracellularly presented reporter tags, however, generated comparable bioluminescent signals with heteromeric WT and p.Glu293Lys subunits and with homomeric WT channels. Conclusions Loss of function and dominant-negative effect confirm the causative role of p.Glu293Lys in ATS1. Co-assembly of Kir2.1 subunits is impaired in homomeric channels consisting of p.Glu293Lys subunits and is partially rescued in heteromeric complexes of WT and p.Glu293Lys Kir2.1 variants. These data point to an important role of Glu293 in mediating subunit assembly, as well as in gating of Kir2.1 channels.


2020 ◽  
Author(s):  
Christin L Deal ◽  
Timothy J Thauland ◽  
Rebecca Signer ◽  
Stanley F Nelson ◽  
Hane Lee ◽  
...  

Viral respiratory infections are the most common childhood infection worldwide. However, even common pathogens can have significant consequences in the context of patients with primary immunodeficiency diseases. More than half or viral infections annually are due to rhinovirus/enterovirus strains. Most clinical manifestations of viral infection are mild. However 3% of cases result in hospitalization in patients who have no other known risk factors. These patients may have an inborn error of immunity, a genetic susceptibility to viral infections. Here we present the case of an adult male who suffered respiratory viral infections his whole life and developed chronic, inflammatory damage to sinuses and lungs as a consequence. Genomic sequencing identified compound heterozygous variants in the IFIH1 gene, encoding the protein Melanoma Differentiation Association Protein 5 (MDA5), a RIG-I-like cytoplasmic sensor of RNA intracellular infections. We show a dominant negative effect on these variants on the level of interferon-induced expression of MDA5 protein. This work supports that loss-of-function variants in IFIH1 affect the sensing of viral infections. Underlying genomic variants may dictate the point at which recurrent, respiratory viral infections leave commonplace experience and incur lasting damage.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 1-1
Author(s):  
Tanzir Ahmed ◽  
Tuoen Liu ◽  
Michael O. Alberti ◽  
Brian Wadugu ◽  
Matthew Ndonwi ◽  
...  

Introduction. Mutations in TP53 are common (~18%) in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia and often undergo loss of heterozygosity. Our understanding of the hematopoietic consequences of expressing mutant TP53-R175H, one of the most common mutations in MDS, is incomplete. In addition, whether TP53-R175H confers a loss-of-function, gain-of-function, or dominant-negative effect in response to chemotherapy has not been fully explored. Methods. We used a constitutive knock-in mouse model expressing TRP53-R172H (G-to-A substitution at nucleotide 515), corresponding to human mutant TP53-R175H. We generated Trp53R172H/+ and Trp53R172H/R172H mice and compared them to wild type (WT), Trp53+/-, and Trp53-/- mice. Peripheral blood (PB) and bone marrow (BM) was analyzed in non-BM transplant conditions, following a non-competitive BM transplant, and following a competitive BM transplant with or without exposure to N-ethyl-N-nitrosourea (ENU) and 5-fluorouracil (5FU). Results. BM hematopoietic stem and progenitor cells (HSPC), including LSK-SLAM cells, were increased in Trp53+/- and Trp53-/-mice (n=4-8, 8-15 weeks old, P&lt;0.01), but not Trp53R172H/+ and Trp53R172H/R172H mice. In order to study the hematopoietic cell-intrinsic properties of mutant TRP53, we transplanted whole BM into lethally irradiated congenic recipient mice and monitored survival. The median overall survival was dependent on the Trp53 genotype of donor cells: WT cells (100% survival at 1 year), Trp53R172H/+ (60% survival at 1 year), Trp53+/- (31 weeks), Trp53-/- (20 weeks), and Trp53R172H/R172H (18 weeks) (n=12-20, P&lt;0.01 for all genotypes vs. WT). To test long-term HSC function of mutant cells, we performed a competitive BM transplant by injecting equal numbers of test and congenic competitor BM into lethally irradiated congenic recipient mice and monitored PB chimerism of recipient mice for 16 weeks. There was PB competitive advantage for all TRP53 mutant cells compared to WT competitor cells, with Trp53-/- cells having the most significant advantage compared to all other mutant genotypes (n=9-11, P&lt;0.05). The results suggest that mutant TRP53-R172H has distinct properties compared to Trp53 deletions, and not consistent with loss-of-function. TP53 mutant cells can clonally expand in patients following cytotoxic chemotherapy. Therefore, we investigated the response of TRP53R172H/+ mutant cells to alkylator (ENU) exposure. We created mixed BM chimeric mice by transplanting test (WT, Trp53+/-, Trp53R172H/+ and Trp53-/-) and WT competitor BM in a 1:3 ratio, respectively. Following engraftment, chimeric mice received vehicle or ENU (2 doses of 100 mg/kg, 9 days apart). ENU-exposed Trp53R172H/+ cells have a robust PB multilineage competitive advantage relative to placebo (Fig. 1A, n = 4-5, 2-fold increase at 10 weeks post-ENU, P&lt;0.001). This expansion was greater than the rise observed for ENU-treated Trp53+/- cells relative to vehicle treatment (1.67-fold relative to vehicle), and similar to the expansion of Trp53-/- cells, regardless of ENU. BM cells from Trp53R172H/+ mice were resistant to ENU-induced p21 expression and cell cycle arrest observed in WT and Trp53+/- mice (n = 4-5, P&lt;0.001, Fig. 1B, C). The results suggest that mutant TRP53-R172H induces a dominant-negative effect following ENU exposure, similar to prior reports following irradiation. Next, we asked whether mutant TRP53-R172H has similar or different effects as Trp53 deletion following exposure to an alternative chemotherapy (5FU). We first treated mice with a single dose of 5FU (200 mg/kg) to deplete cells and monitored WBC count recovery for 4 weeks. Trp53R172H/+ mice had significantly higher recovery WBC counts compared to WT, Trp53+/-, andTrp53-/- mice (n = 5-15, P&lt;0.05, Fig. 1D). Next, we exposed mutant mice to 4 doses of 5FU (150mg/kg x 1 dose, 90 mg/kg x 3 doses, once per week) and monitored survival. We observed that all Trp53-/- mice survived, while Trp53R172H/+ mice had a median survival of 21 days, and Trp53+/- and WT mice had the shortest median survival (13 and 14.5 days, respectively, Fig. 1E). The results suggest that mutant TRP53-R172H cells display a gain-of-function property following a single dose of 5FU. Collectively, the results indicate that mutant TRP53-R172H may induce a gain-of-function or a dominant-negative effect depending on the exposure to specific hematopoietic stresses. Disclosures No relevant conflicts of interest to declare.


2017 ◽  
Vol 114 (48) ◽  
pp. 12731-12736 ◽  
Author(s):  
Rui Zhou ◽  
Guanghui Yang ◽  
Yigong Shi

γ-secretase is an intramembrane protease complex consisting of nicastrin, presenilin-1/2, APH-1a/b, and Pen-2. Hydrolysis of the 99-residue transmembrane fragment of amyloid precursor protein (APP-C99) by γ-secretase produces β-amyloid (Aβ) peptides. Pathogenic mutations in PSEN1 and PSEN2, which encode the catalytic subunit presenilin-1/2 of γ-secretase, lead to familial Alzheimer’s disease in an autosomal dominant manner. However, the underlying mechanism of how the mutant PSEN gene may affect the function of the WT allele remains to be elucidated. Here we report that each of the loss-of-function γ-secretase variants that carries a PSEN1 mutation suppresses the protease activity of the WT γ-secretase on Aβ production. Each of these γ-secretase variants forms a stable oligomer with the WT γ-secretase in vitro in the presence of the detergent CHAPSO {3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate}, but not digitonin. Importantly, robust protease activity of γ-secretase is detectable in the presence of CHAPSO, but not digitonin. These experimental observations suggest a dominant negative effect of the γ-secretase, in which the protease activity of WT γ-secretase is suppressed by the loss-of-function γ-secretase variants through hetero-oligomerization. The relevance of this finding to the genesis of Alzheimer’s disease is critically evaluated.


2013 ◽  
Vol 104 (2) ◽  
pp. 133a
Author(s):  
Aurelie Mercier ◽  
Romain Clément ◽  
Thomas Harnois ◽  
Nicolas Bourmeyster ◽  
Jean-François Faivres ◽  
...  

2009 ◽  
Vol 94 (1) ◽  
pp. 314-319 ◽  
Author(s):  
Toshihiro Tajima ◽  
Akira Ohtake ◽  
Masaya Hoshino ◽  
Shin Amemiya ◽  
Nozomu Sasaki ◽  
...  

Abstract Context: Orthodenticle homeobox 2 (OTX2) is a transcription factor necessary for ocular and forebrain development. In humans, heterozygous mutations of OTX2 cause severe ocular malformations. However, whether mutations of OTX2 cause pituitary structural abnormalities or combined pituitary hormone deficiency (CPHD) has not been clarified. Objectives: We surveyed the functional consequences of a novel OTX2 mutation that was detected in a patient with anophthalmia and CPHD. Patient: We examined a Japanese patient with growth disturbance, anophthalamia, and severe developmental delay. He showed deficiencies in GH, TSH, LH, FSH, and ACTH. Brain magnetic resonance imaging revealed a small anterior pituitary gland, invisible stalk, ectopic posterior lobe, and Chiari malformation. Results: Sequence analysis of OTX2 demonstrated a heterozygous two bases insertion [S136fsX178 (c.576-577insCT)] in exon 3. The mutant Otx2 protein localized to the nucleus, but did not activate the promoter of the HESX1 and POU1F1 gene, indicating a loss of function mutation. No dominant negative effect in the presence of wild-type Otx2 was observed. Conclusion: This case indicates that the OTX2 mutation is a cause of CPHD. Further study of more patients with OTX2 defects is necessary to clarify the clinical phenotypes and endocrine defects caused by OTX2 mutations.


Sign in / Sign up

Export Citation Format

Share Document