Chromatin binding of survivin regulates glucose metabolism in the IFN-g producing CD4+ T cells

2021 ◽  
Author(s):  
Malin C Erlandsson ◽  
Karin ME Andersson ◽  
Nina Y Oparina ◽  
Venkataragavan Chandrasekaran ◽  
Anastasios Damdimopoulos ◽  
...  

Interferon-gamma (IFNg) producing T cells develop metabolic adaptation required for their effector functions in tumour biology, autoimmunity and antiviral defence. Using sorted CD4+ cells we demonstrated that glycolytic switch and high glucose uptake in IFNgproducing cells was associated with survivin expression. Inhibition of survivin restored glycolysis by upregulating the transcription of phosphofructokinase PFKFB3 and reducing glucose uptake. Integration of the whole-genome sequencing of the chromatin immunoprecipitated with survivin with transcription changes in CD4+ cells after survivin inhibition revealed co-localization of survivin, IRF1 and SMAD3 in the regulatory elements paired to the differentially expressed genes. Western blot demonstrated direct binding of survivin to IRF1 and SMAD3. Functionally, inhibition of survivin repressed IFNg signalling and activated SMAD3-dependent protein remodelling, which resulted in the effector-to-memory transition of CD4+ cells. These findings demonstrate the key role of survivin in IFNg-dependent metabolic adaptation and identify survivin inhibition as an attractive strategy to counteract these effects.

2021 ◽  
Author(s):  
Malin Erlandsson ◽  
Karin Andersson ◽  
Nina Oparina ◽  
Venkataragavan Chandrasekaran ◽  
Anastasios Damdimopoulos ◽  
...  

Abstract Upon activation, CD4+ T cells adapt metabolically to fulfill their effector function in autoimmunity. Here we show that nuclear survivin is essential for transcriptional regulation of glucose utilization. We found that the glycolytic switch in interferon (IFN) g–producing CD4+ cells is dependent on a complex of survivin with interferon regulatory factor 1 (IRF1), and Smad3 and was reversed by survivin inhibition. Transcriptome analysis of CD4+ cells and sequencing of survivin-bound chromatin identified a hub of metabolism regulating genes whose transcription depended on survivin. Direct binding of survivin to IRF1 and SMAD3 promoted IRF1-mediated transcription, repressed SMAD3 activity, and lowered PFKFB3 production. Inhibiting survivin upregulated PFKFB3, restored glycolysis, and reduced glucose uptake, improving control over IFNg-dependent T-cell functions. Thus, IRF1-survivin-SMAD3 interactions are important for metabolic adaptation of CD4+ cells and provide an attractive strategy to counteract IFNg-dependent inflammation.


Reumatismo ◽  
2016 ◽  
Vol 68 (4) ◽  
pp. 176 ◽  
Author(s):  
A. Hosseinzadeh ◽  
S. Soukhtehzari ◽  
M. Ghaedi ◽  
R. Mansouri

The increasing rate of autoimmunity in recent decades cannot be related to only genetic instabilities and disorders. Diet can directly influence our health. Studies have shown that there is a relationship between nutritional elements and alteration in the immune system. Among immune cells, the function of T lymphocyte is important in directing immune response. T CD4+ cells lead other immune cells to respond to pathogens by secreting cytokines. HIV+ patients, who have largely lost their T CD4+ cells, are susceptible to opportunistic infections, which do not normally affect healthy people. It seems that the metabolism of T cells is critical for their differentiation and their consequent functions. After activation, T cells need to undergo clonal expansion, which is a high energy- consuming process. Studies have shown that specific metabolites deprivation or their excess supply affects T CD4+cells subsets differentiation. Abnormal induction of subsets of T CD4+ cells causes some autoimmunity reactions and hyper-sensitivity as well, which may result from imbalance of diet uptake. In this mini-review, we describe the findings about fatty acids, glucose, amino acids, and vitamins, which are effective in determining the fates of T CD4+ cells. These findings may help us uncover the role of diet in autoimmune diseases.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 806-806 ◽  
Author(s):  
Kevin Beezhold ◽  
Nathan Moore ◽  
Pailin Chiaranunt ◽  
Rebecca Brown ◽  
Craig A. Byersdorfer

Abstract Allogeneic hematopoietic stem cell transplantation (alloHSCT) represents a curative treatment for high-risk leukemia and a number of non-malignant hematologic disorders. However, the therapeutic use of alloHSCT remains limited by acute graft-versus-host disease (GVHD), where activated donor T cells attack and destroy host tissues in the skin, gastrointestinal tract, and liver. We have previously shown that the alloreactive T cells responsible for GVHD increase their dependence on the oxidation of fat relative to either syngeneic or naive T cells. To explore this adaptation mechanistically, we studied the role of AMPK, an intracellular energy sensor and known driver of fat oxidation, in donor T cells during GVHD. Alloreactive T cells increased phosphorylation of AMPK as early as day 3 post-transplant, with up-regulation in pathways both up- and downstream of AMPK. Changes in phosphorylation were up to 8-fold higher in alloreactive T cells compared to naive T cells or syngeneic controls (p=0.0003). We then investigated the role of AMPK during GVHD pathogenesis using donor cells deficient in AMPK (from AMPKα1fl/flα2fl/fl x CD4-Cre mice). AMPK-/- T cells caused significantly less GVHD in both major-MHC and minor-histocompatibility mismatch models of GVHD (Figure 1A), with a coordinated decrease in the number of donor T cells recovered on day 7 post-transplant (3.15 +/- 0.49x106 versus1.87 +/- 0.53x106, p=0.0006, wildtype (wt) versus AMPK-/- respectively). Importantly, expansion of syngeneic T cells was unaffected by AMPK deficiency (Figure 1B). We next investigated the ability of AMPK-/- T cells to mount effective cytotoxic and anti-leukemia responses. AMPK-/- T cells demonstrated equivalent cytotoxicity against MHC-mismatched targets both in vitro and in vivo and differentiated in similar proportions into cytokine-producing cells (IFN-γ, TNFα, IL-17, and IL-4). We then assessed graft-versus-leukemia (GVL) potential in AMPK-/- cells using a GVL model with high tumor burden. AMPK-/- T cells exhibited equivalent clearance of p815 leukemia cells on day 13 post-transplant (Figure 2A), and extended survival of recipient mice similarly to wt T cells (Figure 2B). To elucidate possible mechanisms underlying this separation of GVL and GVHD responses, we evaluated metabolic pathways in wt and AMPK-/- T cells recovered on day 7. To our surprise, rates of fatty acid oxidation were identical between wt and AMPK-/- T cells and loss of AMPK did not impact alloreactive T autophagy, nor impair signaling downstream of mammalian target of rapamycin. To define the mechanism underlying AMPK-/- benefits, we quantitated levels of regulatory T cells (Treg) on day 7 post-transplant. In contrast to expectation, both the percentage and total number of Treg increased in mice receiving AMPK-/- T cells (0.85 +/- 0.32x104 vs. 1.69 +/- 0.34x104, wt vs. AMPK-/-, p=0.004). Loss of AMPK facilitated donor Treg expansion, as elimination of FoxP3+ cells prior to transplantation abrogated differences between wt and AMPK-/- donors on day 7. Importantly, Treg levels were equal in wt versus AMPK-/- donors prior to transplantation. Finally, we assessed the ability of AMPK-/- T cells to infiltrate into GVHD target organs. As shown in Figure 3, peri-portal infiltration of AMPK-/- cells was significantly reduced compared to wt T cells, and infiltrates in recipients of AMPK-/- cells contained many fewer CD3+ T cells per high-powered field, with CD3+ cells representing a lower percentage of cells overall. Decreased hepatic infiltration correlated with a lower percentage of circulating CD4+ cells and lower levels of the integrin pair α4β7 (55.2 +/- 1.4% versus 47.2 +/- 2.8% α4β7Hi cells, p=0.0017, wt vs. AMPK-/-). In conclusion, deletion of AMPK in donor T cells decreases GVHD severity but spares anti-leukemia responses and preserves homeostatic immune reconstitution. Mechanistically, this occurs through a decrease in pathogenic T cell numbers, an increase in the number and percentage of Treg cells, fewer circulating CD4+ cells, and decreased infiltration of donor cells into target organs. From these findings, we conclude that AMPK represents a clinically relevant target in donor T cells pre-transplant and are actively exploring ways to translate this exciting therapy into clinical practice. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 20 (2) ◽  
pp. 428 ◽  
Author(s):  
Federica Logiodice ◽  
Letizia Lombardelli ◽  
Ornela Kullolli ◽  
Herman Haller ◽  
Enrico Maggi ◽  
...  

Trophoblast expressing paternal HLA-C resembles a semiallograft, and could be rejected by maternal T cells. IL-22 seems to be involved in allograft rejection and thus could be responsible for miscarriages. We examined the role of decidual IL-22-producing CD4+ T on human pregnancy. In those experiencing successful pregnancy and those experiencing unexplained recurrent abortion (URA), the levels of IL-22 produced by decidual CD4+ T cells are higher than those of peripheral blood T cells. We found a correlation of IL-22 and IL-4 produced by decidual CD4+ T cells in those experiencing successful pregnancy, not in those experiencing URA. The correlation of IL-22 and IL-4 was also found in the serum of successful pregnancy. A prevalence of CD4+ T cells producing IL-22 and IL-4 (Th17/Th2/IL-22+, Th17/Th0/IL-22+, Th17/Th2/IL-22+, and Th0/IL-22+ cells) was observed in decidua of those experiencing successful pregnancy, whereas Th17/Th1/IL-22+ cells, which do not produce IL-4, are prevalent in those experiencing URA. Th17/Th2/IL-22+ and Th17/Th0/IL-22+ cells are exclusively present at the embryo implantation site where IL-4, GATA-3, IL-17A, ROR-C, IL-22, and AHR mRNA are expressed. T-bet and IFN-γ mRNA are found away from the implantation site. There is no pathogenic role of IL-22 when IL-4 is also produced by decidual CD4+ cells. Th17/Th2/IL-22+ and Th17/Th0/IL-22+ cells seem to be crucial for embryo implantation.


2020 ◽  
Author(s):  
Jaya Krishnan ◽  
Chris W. Seidel ◽  
Ning Zhang ◽  
Jake VanCampen ◽  
Robert Peuß ◽  
...  

AbstractChanges in cis-regulatory elements play important roles in adaptation and phenotypic evolution. However, their contribution to metabolic adaptation of organisms is less understood. Here we have utilized a unique vertebrate model, Astyanax mexicanus, different morphotypes of which survive in nutrient-rich surface and nutrient-deprived cave water to uncover gene regulatory networks in metabolic adaptation. We performed genome-wide epigenetic profiling in the liver tissue of one surface and two independently derived cave populations. We find that many cis-regulatory elements differ in their epigenetic status/chromatin accessibility between surface fish and cavefish, while the two independently derived cave populations have evolved remarkably similar regulatory signatures. These differentially accessible regions are associated with genes of key pathways related to lipid metabolism, circadian rhythm and immune system that are known to be altered in cavefish. Using in vitro and in vivo functional testing of the candidate cis-regulatory elements, we find that genetic changes within them cause quantitative expression differences. We characterized one cis-regulatory element in the hpdb gene and found a genomic deletion in cavefish that abolishes binding of the transcriptional repressor IRF2 in vitro and derepresses enhancer activity in reporter assays. Genetic experiments further validated a cis-mediated role of the enhancer and suggest a role of this deletion in the upregulation of hpdb in wild cavefish populations. Selection of this mutation in multiple independent cave populations supports its importance in the adaptation to the cave environment, providing novel molecular insights into the evolutionary trade-off between loss of pigmentation and adaptation to a food-deprived cave environment.


2021 ◽  
Author(s):  
Ekaterina Sidorenko ◽  
Maria Sokolova ◽  
Antti Pennanen ◽  
Salla Kyheroinen ◽  
Guido Posern ◽  
...  

Myocardin-related transcription factor A (MRTF-A), a coactivator of serum response factor (SRF), regulates the expression of many cytoskeletal genes in response to cytoplasmic and nuclear actin dynamics. Here we describe a novel mechanism to regulate MRTF-A activity within the nucleus by showing that lamina-associated polypeptide 2α (Lap2α), the nucleoplasmic isoform of Lap2, is a direct binding partner of MRTF-A, and required for the efficient expression of MRTF-A/SRF target genes. Mechanistically, Lap2α is not required for MRTF-A nuclear localization, unlike most other MRTF-A regulators, but is required for binding of MRTF-A to its target genes. This regulatory step takes place prior to MRTF-A chromatin binding, because Lap2α neither interacts with, nor specifically influences active histone marks on MRTF-A/SRF target genes. Phenotypically, Lap2α is required for serum-induced cell migration, and deregulated MRTF-A activity may also contribute to muscle and proliferation phenotypes associated with loss of Lap2α. Our studies therefore add another regulatory layer to the control of MRTF-A-SRF-mediated gene expression, and broaden the role of Lap2α in transcriptional regulation.


2021 ◽  
Vol 14 ◽  
Author(s):  
Renhao Xue ◽  
Hao Meng ◽  
Jiaxiang Yin ◽  
Jingyao Xia ◽  
Zhitao Hu ◽  
...  

Exocytosis is a Ca2+-regulated process that requires the participation of Ca2+ sensors. In the 1980s, two classes of Ca2+-binding proteins were proposed as putative Ca2+ sensors: EF-hand protein calmodulin, and the C2 domain protein synaptotagmin. In the next few decades, numerous studies determined that in the final stage of membrane fusion triggered by a micromolar boost in the level of Ca2+, the low affinity Ca2+-binding protein synaptotagmin, especially synaptotagmin 1 and 2, acts as the primary Ca2+ sensor, whereas calmodulin is unlikely to be functional due to its high Ca2+ affinity. However, in the meantime emerging evidence has revealed that calmodulin is involved in the earlier exocytotic steps prior to fusion, such as vesicle trafficking, docking and priming by acting as a high affinity Ca2+ sensor activated at submicromolar level of Ca2+. Calmodulin directly interacts with multiple regulatory proteins involved in the regulation of exocytosis, including VAMP, myosin V, Munc13, synapsin, GAP43 and Rab3, and switches on key kinases, such as type II Ca2+/calmodulin-dependent protein kinase, to phosphorylate a series of exocytosis regulators, including syntaxin, synapsin, RIM and Ca2+ channels. Moreover, calmodulin interacts with synaptotagmin through either direct binding or indirect phosphorylation. In summary, calmodulin and synaptotagmin are Ca2+ sensors that play complementary roles throughout the process of exocytosis. In this review, we discuss the complementary roles that calmodulin and synaptotagmin play as Ca2+ sensors during exocytosis.


2021 ◽  
Vol 5 (12) ◽  
pp. 2644-2649
Author(s):  
Karthik Nath ◽  
Soi-Cheng Law ◽  
Muhammed B. Sabdia ◽  
Jay Gunawardana ◽  
Lilia M. de Long ◽  
...  

Data on the prognostic impact of pretherapy 18F-fluorodeoxyglucose–positron emission tomography (FDG-PET) in follicular lymphoma (FL) is conflicting. The predictive utility of pretherapy total metabolic tumor volume (TMTV) and maximum standardized uptake value (SUVmax) on outcome appears to vary between regimens. Chemoimmunotherapies vary in the extent of T-cell depletion they induce. The role of intratumoral T cells on pretherapy FDG-PET parameters is undefined. We assessed pretherapy FDG-PET parameters and quantified intratumoral T cells by multiple methodologies. Low intratumoral T cells associated with approximately sixfold higher TMTV, and FL nodes from patients with high TMTV showed increased malignant B-cell infiltration and fewer clonally expanded intratumoral CD8+ and CD4+ T-follicular helper cells than those with low TMTV. However, fluorescently labeled glucose uptake was higher in CD4+ and CD8+ T cells than intratumoral B cells. In patients with FDG-PET performed prior to excisional biopsy, SUVmax within the subsequently excised node associated with T cells but not B cells. In summary, TMTV best reflects the malignant B-cell burden in FL, whereas intratumoral T cells influence SUVmax. This may contribute to the contradictory results between the prognostic role of different FDG-PET parameters, particularly between short- and long-term T-cell–depleting chemoimmunotherapeutic regimens. The impact of glucose uptake in intratumoral T cells should be considered when interpreting pretherapy FDG-PET in FL.


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3479-3486 ◽  
Author(s):  
LM Webb ◽  
M Feldmann

CD28 is a major costimulatory signal receptor for T cells. We have used human naive CD4+ cells from cord blood to analyze the effect of the CD28/B7 costimulatory pathway on development of T helper (Th) subsets. We show that CD28 costimulation is critical for development of the Th2 cytokine-producing cells and that in the absence of CD28 costimulation, cells are not primed to produce Th2 cytokines and consequently “default” to the Th1 subset, independent of the presence of exogenous cytokines. After CD28 costimulation, cells differentiate into a subset that produces Th2 cytokines. However, further CD28 costimulation is not required to maintain Th2 cytokine production. We conclude that D28 costimulation is critical for the development of Th0 and Th2 subsets, but not for the maintenance of cytokine production.


Blood ◽  
2009 ◽  
Vol 114 (14) ◽  
pp. 2858-2859 ◽  
Author(s):  
Daniel Fowler
Keyword(s):  
T Cells ◽  

Using double cytokine knockout donor CD4 cells, in this issue of Blood, Yi and colleagues help clarify the complex role of IFN-γ and the tissue specificity of Th1, Th17, and Th2 subsets in murine GVHD.1


Sign in / Sign up

Export Citation Format

Share Document