scholarly journals The effector FEP3/IRON MAN1 modulates interaction between BRUTUS-LIKE1 and bHLH subgroup IVb and IVc proteins

2021 ◽  
Author(s):  
Daniela M. Lichtblau ◽  
Birte Schwarz ◽  
Dibin Baby ◽  
Christopher Endres ◽  
Christin Sieberg ◽  
...  

Plants use the micronutrient iron (Fe) efficiently to balance the requirements for Fe during growth with its potential cytotoxic effects. A cascade of basic helix-loop-helix (bHLH) transcription factors is initiated by bHLH proteins of the subgroups IVb and IVc. This induces more than 50 genes in higher plants that can be grouped in co-expression clusters. Gene co-expression networks contain information on functional protein interactomes. We conducted a targeted yeast two-hybrid screen with pairwise combinations of 23 proteins stemming from previously characterized Fe-deficiency-induced gene co-expression clusters and regulators. We identified novel and described interactions, as well as interaction hubs with multiple interactions within the network. We found that BRUTUS-LIKE E3 ligases (BTSL1, BTSL2) interacted with basic helix-loop-helix (bHLH) transcription factors of the subgroups IVb and IVc including PYE, bHLH104 and ILR3, and with small FE UPTAKE-INDUCING PEPTIDE3/IRON MAN1 (FEP3/IMA1). Through deletion studies and with support of molecular docking, we mapped the interaction sites to three-amino-acid regions in BTSL1 and FEP3/IMA1. The FEP3/IMA1 active residues are present in interacting sites of the bHLH IVc factors. FEP3/IMA1 attenuated interaction of BTSL1 with bHLH proteins in a quantitative yeast three-hybrid assay suggesting that it is an inhibitor. Co-expression of BTSL1 and bHLH IVb and IVc factors uncovered unexpected patterns of subcellular localization. Combining deletion mapping, protein interaction and physiological analysis, we discuss the model that FEP3/IMA1 is a small effector protein inhibiting BTSL1/BTSL2-mediated degradation of bHLH subgroup IVb and IVc proteins.

Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Satya Srirama Karthik Divvela ◽  
Darius Saberi ◽  
Beate Brand-Saberi

Atoh8 belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) proteins. bHLH proteins have been identified in a wide range of organisms from yeast to humans. The members of this special group of transcription factors were found to be involved not only in embryonic development but also in disease initiation and its progression. Given their importance in several fundamental processes, the translation, subcellular location and turnover of bHLH proteins is tightly regulated. Alterations in the expression of bHLH proteins have been associated with multiple diseases also in context with Atoh8 which seems to unfold its functions as both transcriptional activator and repressor. Like many other bHLH transcription factors, so far, Atoh8 has also been observed to be involved in both embryonic development and carcinogenesis where it mainly acts as tumor suppressor. This review summarizes our current understanding of Atoh8 structure, function and regulation and its complex and partially controversial involvement in development and disease.


2000 ◽  
Vol 20 (13) ◽  
pp. 4826-4837 ◽  
Author(s):  
Gino Poulin ◽  
Mélanie Lebel ◽  
Michel Chamberland ◽  
Francois W. Paradis ◽  
Jacques Drouin

ABSTRACT Homeoproteins and basic helix-loop-helix (bHLH) transcription factors are known for their critical role in development and cellular differentiation. The pituitary pro-opiomelanocortin (POMC) gene is a target for factors of both families. Indeed, pituitary-specific transcription of POMC depends on the action of the homeodomain-containing transcription factor Pitx1 and of bHLH heterodimers containing NeuroD1. We now show lineage-restricted expression of NeuroD1 in pituitary corticotroph cells and a direct physical interaction between bHLH heterodimers and Pitx1 that results in transcriptional synergism. The interaction between the bHLH and homeodomains is restricted to ubiquitous (class A) bHLH and to the Pitx subfamily. Since bHLH heterodimers interact with Pitx factors through their ubiquitous moiety, this mechanism may be implicated in other developmental processes involving bHLH factors, such as neurogenesis and myogenesis.


2020 ◽  
Author(s):  
Gwen Swinnen ◽  
Margaux De Meyer ◽  
Jacob Pollier ◽  
Francisco Javier Molina-Hidalgo ◽  
Evi Ceulemans ◽  
...  

ABSTRACTSpecialized metabolites are produced by plants to fend off biotic enemies. Across the plant kingdom, the biosynthesis of these defense compounds is promoted by jasmonate signaling in which clade IIIe basic helix-loop-helix (bHLH) transcription factors take on a central role. Tomato (Solanum lycopersicum) produces cholesterol-derived steroidal glycoalkaloids (SGAs) that act as phytoanticipins against a broad variety of herbivores and pathogens. The biosynthesis of SGAs from cholesterol occurs constitutively in tomato plants and can be further stimulated by jasmonates. Here, we demonstrate that the two tomato clade IIIe bHLH transcription factors, MYC1 and MYC2, redundantly and specifically control the constitutive biosynthesis of SGAs. Double myc1 myc2 loss-of-function tomato hairy roots displayed suppressed constitutive expression of cholesterol and SGA biosynthesis genes, and consequently severely reduced levels of the main tomato SGAs α-tomatine and dehydrotomatine. In contrast, basal expression of genes involved in canonical jasmonate signaling or in the biosynthesis of highly jasmonate-inducible phenylpropanoid-polyamine conjugates was not affected. Furthermore, CRISPR-Cas9(VQR)-mediated genome editing of a specific cis-regulatory element, targeted by MYC1/2, in the promoter of a cholesterol biosynthesis gene led to decreased constitutive expression of this gene, but did not affect its jasmonate inducibility. Our results demonstrate that clade IIIe bHLH transcriptional regulators might have evolved to regulate the biosynthesis of specific constitutively accumulating specialized metabolites independent of jasmonate signaling.One sentence summaryThe clade IIIe basic helix-loop-helix transcription factors MYC1 and MYC2 control the constitutive biosynthesis of tomato steroidal glycoalkaloids and might do so independently of jasmonate signaling.


2007 ◽  
Vol 6 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Setsu Endoh-Yamagami ◽  
Kiyoshi Hirakawa ◽  
Daisuke Morioka ◽  
Ryouichi Fukuda ◽  
Akinori Ohta

ABSTRACT The expression of the ALK1 gene, which encodes cytochrome P450, catalyzing the first step of alkane oxidation in the alkane-assimilating yeast Yarrowia lipolytica, is highly regulated and can be induced by alkanes. Previously, we identified a cis-acting element (alkane-responsive element 1 [ARE1]) in the ALK1 promoter. We showed that a basic helix-loop-helix (bHLH) protein, Yas1p, binds to ARE1 in vivo and mediates alkane-dependent transcription induction. Yas1p, however, does not bind to ARE1 by itself in vitro, suggesting that Yas1p requires another bHLH protein partner for its DNA binding, as many bHLH transcription factors function by forming heterodimers. To identify such a binding partner of Yas1p, here we screened open reading frames encoding proteins with the bHLH motif from the Y. lipolytica genome database and identified the YAS2 gene. The deletion of the YAS2 gene abolished the alkane-responsive induction of ALK1 transcription and the growth of the yeast on alkanes. We revealed that Yas2p has transactivation activity. Furthermore, Yas1p and Yas2p formed a protein complex that was required for the binding of these proteins to ARE1. These findings allow us to postulate a model in which bHLH transcription factors Yas1p and Yas2p form a heterocomplex and mediate the transcription induction in response to alkanes.


2020 ◽  
Author(s):  
Hayato Suzuki ◽  
Hikaru Seki ◽  
Toshiya Muranaka

Abstract Background: Fabaceae plants appear to contain larger numbers of subclade IVa basic-helix-loop-helix (bHLH) transcription factors than other plant families, and some members of this subclade have been identified as saponin biosynthesis regulators. We aimed to systematically elucidate the diversification of this subclade and obtain insights into the evolutionary history of saponin biosynthesis regulation in Fabaceae.Results: In this study, we collected sequences of subclade IVa bHLH proteins from 40 species, including fabids and other plants, and found greater numbers of subclade IVa bHLHs in Fabaceae. We confirmed conservation of the bHLH domain, C-terminal ACT-like domain, and exon-intron organisation among almost all subclade IVa members in model legumes, supporting the results of our classification. Phylogenetic tree-based classification of subclade IVa revealed the presence of three different groups. Interestingly, most Fabaceae subclade IVa bHLHs fell into group 1, which contained all legume saponin biosynthesis regulators identified to date. These observations support the co-occurrence and Fabaceae-specific diversification of saponin biosynthesis regulators. Comparing the expression of orthologous genes in Glycine max, Medicago truncatula, and Lotus japonicus, orthologues of MtTSAR1 (the first identified soyasaponin biosynthesis regulatory transcription factor) were not expressed in the same tissues, suggesting that group 1 members have gained different expression patterns and contributions to saponin biosynthesis during their duplication and divergence. On the other hand, groups 2 and 3 possessed fewer members, and their phylogenetic relationships and expression patterns were highly conserved, indicating that their activities may be conserved across Fabaceae.Conclusions: This study suggests subdivision and diversification of subclade IVa bHLHs in Fabaceae plants. The results will be useful for candidate selection of unidentified saponin biosynthesis regulators. Furthermore, the functions of groups 2 and 3 members are interesting targets for clarifying the evolution of subclade IVa bHLH transcription factors in Fabaceae.


2019 ◽  
Author(s):  
Min Yang ◽  
Hu Yang ◽  
Ruibin Kuang ◽  
Chenping Zhou ◽  
Bingxiong Huang ◽  
...  

Abstract Background : As a superfamily of transcription factors (TFs), the basic helix-loop-helix (bHLH) proteins have been identified and functionally characterized in many plants. However, no comprehensive analysis of the bHLH family in papaya ( Carica papaya L. ) has been reported previously. Results: In this study, a total of 73 CpbHLH genes were found in papaya, and these genes were classified into 18 subfamilies based on phylogenetic analysis, with one orphans. Almost all of the CpbHLH in the same subfamily shared similar gene structures and protein motifs according to an analysis of exon/intron organizations and motif compositions. The number of exons in CpbHLH genes varied from 1 to 11 with an average of 5. The amino acid sequences of the bHLH domains were quite conservative, especially Leu-27 and Leu-63. Promoter cis -element analysis revealed that most of the CpbHLH genes contained cis -elements that can respond to various biotic/abiotic stress-related events. Gene ontology (GO) analysis revealed that Cp bHLH mainly functions in protein dimerization activity and DNA-binding, and most Cp bHLH proteins were predicted to localize in the nucleus. Abiotic stress treatment and quantitative real-time PCR (qRT-PCR) revealed some predicted CpbHLH genes that might be responsible for abiotic stress responses in papaya. Conclusions : A total of 73 bHLH transcription factors were identified from papaya, and their gene structures, conserved domains, sequence features, phylogenetic relationship, promoter cis -element, GO annotation and gene expression profiles responsible for abiotic stress were investigated. Our findings lay a foundation for further evolutionary and functional elucidation of Cp bHLHs. Keywords : papaya, genome-wide analysis, bHLH transcription factors, abiotic stress


2008 ◽  
Vol 19 (6) ◽  
pp. 2509-2519 ◽  
Author(s):  
Jannek Hauser ◽  
Juha Saarikettu ◽  
Thomas Grundström

The members of the MyoD family of basic helix-loop-helix (bHLH) transcription factors are critical regulators of skeletal muscle differentiation that function as heterodimers with ubiquitously expressed E-protein bHLH transcription factors. These heterodimers must compete successfully with homodimers of E12 and other E-proteins to enable myogenesis. Here, we show that E12 mutants resistant to Ca2+-loaded calmodulin (CaM) inhibit MyoD-initiated myogenic conversion of transfected fibroblasts. Ca2+ channel blockers reduce, and Ca2+ stimulation increases, transcription by coexpressed MyoD and wild-type E12 but not CaM-resistant mutant E12. Furthermore, CaM-resistant E12 gives lower MyoD binding and higher E12 binding to a MyoD-responsive promoter in vivo and cannot rescue myogenic differentiation that has been inhibited by siRNA against E12 and E47. Our data support the concept that Ca2+-loaded CaM enables myogenesis by inhibiting DNA binding of E-protein homodimers, thereby promoting occupancy of myogenic bHLH protein/E-protein heterodimers on promoters of myogenic target genes.


Sign in / Sign up

Export Citation Format

Share Document