scholarly journals Widespread distribution of collagens and collagen-associated domains in eukaryotes

2021 ◽  
Author(s):  
Tess A Linden ◽  
Nicole King

The origin of collagen, the dominant structural component of metazoan extracellular matrix, has long been cited as a critical step in the evolution of metazoan multicellularity. While collagens were once thought to be found only in metazoans, scattered reports of collagen domains in Fungi, and more recently in close relatives of metazoans, have called into question whether collagens are truly unique to metazoans. Here, we take advantage of recently sequenced genomes and transcriptomes of diverse holozoans (the clade encompassing metazoans and their close relatives), as well as publicly available proteomes from diverse non-holozoan eukaryotes, to conduct a systematic search for collagen domains across eukaryotic diversity. We find that collagen domains are ubiquitous in choanoflagellates, the sister group of metazoans, and widespread across many other major eukaryotic taxa. Many predicted collagens in non-metazoans are comparable to metazoan collagens in length and proline content. Moreover, most are present in species that also encode putative prolyl 4-hydroxylase domains, suggesting that, like metazoan collagens, they may be stabilized through the hydroxylation of prolines. Fibrillar collagen and collagen IV appear to be unique to metazoans, and we posit that their ability to assemble into superstructures may have contributed to the origin of metazoan multicellularity.

Author(s):  
L. Terracio ◽  
A. Dewey ◽  
K. Rubin ◽  
T.K. Borg

The recognition and interaction of cells with the extracellular matrix (ECM) effects the normal physiology as well as the pathology of all multicellular organisms. These interactions have been shown to influence the growth, development, and maintenance of normal tissue function. In previous studies, we have shown that neonatal cardiac myocytes specifically interacts with a variety of ECM components including fibronectin, laminin, and collagens I, III and IV. Culturing neonatal myocytes on laminin and collagen IV induces an increased rate of both cell spreading and sarcomerogenesis.


2015 ◽  
Vol 112 (33) ◽  
pp. 10200-10207 ◽  
Author(s):  
Jan Janouškovec ◽  
Denis V. Tikhonenkov ◽  
Fabien Burki ◽  
Alexis T. Howe ◽  
Martin Kolísko ◽  
...  

Apicomplexans are a major lineage of parasites, including causative agents of malaria and toxoplasmosis. How such highly adapted parasites evolved from free-living ancestors is poorly understood, particularly because they contain nonphotosynthetic plastids with which they have a complex metabolic dependency. Here, we examine the origin of apicomplexan parasitism by resolving the evolutionary distribution of several key characteristics in their closest free-living relatives, photosynthetic chromerids and predatory colpodellids. Using environmental sequence data, we describe the diversity of these apicomplexan-related lineages and select five species that represent this diversity for transcriptome sequencing. Phylogenomic analysis recovered a monophyletic lineage of chromerids and colpodellids as the sister group to apicomplexans, and a complex distribution of retention versus loss for photosynthesis, plastid genomes, and plastid organelles. Reconstructing the evolution of all plastid and cytosolic metabolic pathways related to apicomplexan plastid function revealed an ancient dependency on plastid isoprenoid biosynthesis, predating the divergence of apicomplexan and dinoflagellates. Similarly, plastid genome retention is strongly linked to the retention of two genes in the plastid genome, sufB and clpC, altogether suggesting a relatively simple model for plastid retention and loss. Lastly, we examine the broader distribution of a suite of molecular characteristics previously linked to the origins of apicomplexan parasitism and find that virtually all are present in their free-living relatives. The emergence of parasitism may not be driven by acquisition of novel components, but rather by loss and modification of the existing, conserved traits.


2021 ◽  
Vol 118 (39) ◽  
pp. e2104461118
Author(s):  
Wei Luo ◽  
Suning Liu ◽  
Wenqiang Zhang ◽  
Liu Yang ◽  
Jianhua Huang ◽  
...  

It is well documented that the juvenile hormone (JH) can function as a gonadotropic hormone that stimulates vitellogenesis by activating the production and uptake of vitellogenin in insects. Here, we describe a phenotype associated with mutations in the Drosophila JH receptor genes, Met and Gce: the accumulation of mature eggs with reduced egg length in the ovary. JH signaling is mainly activated in ovarian muscle cells and induces laminin gene expression in these cells. Meanwhile, JH signaling induces collagen IV gene expression in the adult fat body, from which collagen IV is secreted and deposited onto the ovarian muscles. Laminin locally and collagen IV remotely contribute to the assembly of ovarian muscle extracellular matrix (ECM); moreover, the ECM components are indispensable for ovarian muscle contraction. Furthermore, ovarian muscle contraction externally generates a mechanical force to promote ovulation and maintain egg shape. This work reveals an important mechanism for JH-regulated insect reproduction.


2020 ◽  
Vol 55 (6) ◽  
pp. 1901200 ◽  
Author(s):  
Nick J.I. Hamilton ◽  
Dani Do Hyang Lee ◽  
Kate H.C. Gowers ◽  
Colin R. Butler ◽  
Elizabeth F. Maughan ◽  
...  

Current methods to replace damaged upper airway epithelium with exogenous cells are limited. Existing strategies use grafts that lack mucociliary function, leading to infection and the retention of secretions and keratin debris. Strategies that regenerate airway epithelium with mucociliary function are clearly desirable and would enable new treatments for complex airway disease.Here, we investigated the influence of the extracellular matrix (ECM) on airway epithelial cell adherence, proliferation and mucociliary function in the context of bioengineered mucosal grafts. In vitro, primary human bronchial epithelial cells (HBECs) adhered most readily to collagen IV. Biological, biomimetic and synthetic scaffolds were compared in terms of their ECM protein content and airway epithelial cell adherence.Collagen IV and laminin were preserved on the surface of decellularised dermis and epithelial cell attachment to decellularised dermis was greater than to the biomimetic or synthetic alternatives tested. Blocking epithelial integrin α2 led to decreased adherence to collagen IV and to decellularised dermis scaffolds. At air–liquid interface (ALI), bronchial epithelial cells cultured on decellularised dermis scaffolds formed a differentiated respiratory epithelium with mucociliary function. Using in vivo chick chorioallantoic membrane (CAM), rabbit airway and immunocompromised mouse models, we showed short-term preservation of the cell layer following transplantation.Our results demonstrate the feasibility of generating HBEC grafts on clinically applicable decellularised dermis scaffolds and identify matrix proteins and integrins important for this process. The long-term survivability of pre-differentiated epithelia and the relative merits of this approach against transplanting basal cells should be assessed further in pre-clinical airway transplantation models.


1992 ◽  
Vol 262 (1) ◽  
pp. L21-L31 ◽  
Author(s):  
P. G. Phillips ◽  
L. Birnby ◽  
L. A. Di Bernardo ◽  
T. J. Ryan ◽  
M. F. Tsan

Confluent calf pulmonary artery endothelial monolayers exposed to 95% oxygen for 1, 2, or 3 days exhibit a time-dependent increase in adherence to substratum, which closely parallels changes in actin cytoarchitecture and the distribution of focal contact proteins vinculin and talin. Oxygen exposure also resulted in elevated plasminogen activator (PA) activity in conditioned media (CM) and in cytoskeletal protein- and focal contact protein-enriched fractions, with highest levels achieved in the latter two fractions at 48 h after oxygen exposure. PAs have been shown to participate in dismantling of extracellular matrix in a number of physiological and pathological situations. Immunocytochemical studies demonstrated extensive restructuring of matrix proteins collagen IV, laminin, and fibronectin, which correlated temporally with elevated PA levels. Further, when protease-containing cell fractions were used to study degradation of isolated matrices, those obtained from hyperoxia-exposed cells were substantially more active than those from normoxia-exposed cells. Our data suggest that hyperoxia-induced production of PA (and perhaps other proteases) may be partly responsible for degradation of the extracellular matrix of endothelial cells.


1987 ◽  
Vol 104 (3) ◽  
pp. 623-634 ◽  
Author(s):  
D E Hall ◽  
K M Neugebauer ◽  
L F Reichardt

Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.


2002 ◽  
Vol 70 (9) ◽  
pp. 4902-4907 ◽  
Author(s):  
Doran L. Fink ◽  
Bruce A. Green ◽  
Joseph W. St. Geme

ABSTRACT Nontypeable Haemophilus influenzae (NTHI) initiates infection by colonizing the upper respiratory tract mucosa. NTHI disease frequently occurs in the context of respiratory tract inflammation, where organisms encounter damaged epithelium and exposed basement membrane. In this study, we examined interactions between the H. influenzae Hap adhesin and selected extracellular matrix proteins. Hap is an autotransporter protein that undergoes autoproteolytic cleavage, with release of the adhesive passenger domain, Haps, from the bacterial cell surface. We found that Hap promotes bacterial adherence to purified fibronectin, laminin, and collagen IV and that Hap-mediated adherence is enhanced by inhibition of autoproteolysis. Adherence is inhibited by pretreatment of bacteria with a polyclonal antiserum recognizing Haps. Purified Haps binds with high affinity to fibronectin, laminin, and collagen IV but not to collagen II. Binding of Haps to fibronectin involves interaction with the 45-kDa gelatin-binding domain but not the 30-kDa heparin-binding domain of fibronectin. Taken together, these observations suggest that interactions between Hap and extracellular matrix proteins may play an important role in NTHI colonization of the respiratory tract.


2009 ◽  
Vol 21 (9) ◽  
pp. 75
Author(s):  
K. Hummitzsch ◽  
H. F. Irving-Rodgers ◽  
L. S. Murdiyarso ◽  
W. M. Bonner ◽  
Y. Sado ◽  
...  

Extracellular matrix (ECM) has been shown to have distinct expression patterns during bovine follicle and corpus luteum (CL) formation and regression. To date little is known about ECM patterns during follicle and CL formation in the mouse ovary. Twenty nine day old mice were treated with PMSG on experimental day 0 and 1 to induce follicle development, and subsequently with hCG on day 2 to induce ovulation. Ovaries were collected for immunohistochemistry on days 0, 2 and 5 (n = 10 per group). Another group was similarly treated but was additionally mated, and ovaries examined in the pregnant mice on experimental day 11 (n = 7). The follicular basal lamina (BM) of all developmental stages contained collagen IV α1 and α2, laminin α1, β1 and γ1 chains, nidogen 1 and 2, and perlecan. Collagen XVIII was only found in BMs of primordial, primary and some preantral follicles, whereas laminin α2 was only present in some preantral and antral follicles. BMs of atretic follicles showed similar composition to healthy follicles. A specialized matrix of the membrana granulosa (focimatrix) was detected in both healthy and atretic follicles. The focimatrix contained collagen IV α1 and α2, laminin α1, β1 and γ1 chains, nidogen 1 and 2, perlecan and collagen XVIII, but not laminin α2. The immunostaining in CL was restricted to capillary sub-endothelial basal laminas and contained collagen IV α1 and α2, laminin α1, β1 and γ1 chains, nidogen 1 and 2, perlecan and collagen XVIII. No parenchymal matrix, as observed in cow and human, was detected. In addition, laminin α4 and α5 were not immunolocalised to any structure in the mouse ovary. The composition of the BM of follicles in the mouse ovary is similar to cow and rat, but the appearance and composition of the focimatrix differs from bovine ovaries.


2020 ◽  
Vol 295 (36) ◽  
pp. 12697-12705
Author(s):  
Boushra Bathish ◽  
Martina Paumann-Page ◽  
Louise N. Paton ◽  
Anthony J. Kettle ◽  
Christine C. Winterbourn

Peroxidasin is a heme peroxidase that oxidizes bromide to hypobromous acid (HOBr), a powerful oxidant that promotes the formation of the sulfilimine crosslink in collagen IV in basement membranes. We investigated whether HOBr released by peroxidasin leads to other oxidative modifications of proteins, particularly bromination of tyrosine residues, in peroxidasin-expressing PFHR9 cells. Using stable isotope dilution LC-MS/MS, we detected the formation of 3-bromotyrosine, a specific biomarker of HOBr-mediated protein modification. The level of 3-bromotyrosine in extracellular matrix proteins from normally cultured cells was 1.1 mmol/mol tyrosine and decreased significantly in the presence of the peroxidasin inhibitor, phloroglucinol. A negligible amount of 3-bromotyrosine was detected in peroxidasin-knockout cells. 3-Bromotyrosine formed both during cell growth in culture and in the isolated decellularized extracellular matrix when embedded peroxidasin was supplied with hydrogen peroxide and bromide. The level of 3-bromotyrosine was significantly higher in extracellular matrix than intracellular proteins, although a low amount was detected intracellularly. 3-Bromotyrosine levels increased with higher bromide concentrations and decreased in the presence of physiological concentrations of thiocyanate and urate. However, these peroxidase substrates showed moderate to minimal inhibition of collagen IV crosslinking. Our findings provide evidence that peroxidasin promotes the formation of 3-bromotyrosine in proteins. They show that HOBr produced by peroxidasin is selective for, but not limited to, the crosslinking of collagen IV. Based on our findings, the use of 3-bromotyrosine as a specific biomarker of oxidative damage by HOBr warrants further investigation in clinical conditions linked to high peroxidasin expression.


Sign in / Sign up

Export Citation Format

Share Document