scholarly journals TRAKR - A reservoir-based tool for fast and accurate classification of neural time-series patterns

2021 ◽  
Author(s):  
Muhammad Furqan Afzal ◽  
Christian David Márton ◽  
Erin L. Rich ◽  
Kanaka Rajan

Neuroscience has seen a dramatic increase in the types of recording modalities and complexity of neural time-series data collected from them. The brain is a highly recurrent system producing rich, complex dynamics that result in different behaviors. Correctly distinguishing such nonlinear neural time series in real-time, especially those with non-obvious links to behavior, could be useful for a wide variety of applications. These include detecting anomalous clinical events such as seizures in epilepsy, and identifying optimal control spaces for brain machine interfaces. It remains challenging to correctly distinguish nonlinear time-series patterns because of the high intrinsic dimensionality of such data, making accurate inference of state changes (for intervention or control) difficult. Simple distance metrics, which can be computed quickly do not yield accurate classifications. On the other end of the spectrum of classification methods, ensembles of classifiers or deep supervised tools offer higher accuracy but are slow, data-intensive, and computationally expensive. We introduce a reservoir-based tool, state tracker (TRAKR), which offers the high accuracy of ensembles or deep supervised methods while preserving the computational benefits of simple distance metrics. After one-shot training, TRAKR can accurately, and in real time, detect deviations in test patterns. By forcing the weighted dynamics of the reservoir to fit a desired pattern directly, we avoid many rounds of expensive optimization. Then, keeping the output weights frozen, we use the error signal generated by the reservoir in response to a particular test pattern as a classification boundary. We show that, using this approach, TRAKR accurately detects changes in synthetic time series. We then compare our tool to several others, showing that it achieves highest classification performance on a benchmark dataset, sequential MNIST, even when corrupted by noise. Additionally, we apply TRAKR to electrocorticography (ECoG) data from the macaque orbitofrontal cortex (OFC), a higher-order brain region involved in encoding the value of expected outcomes. We show that TRAKR can classify different behaviorally relevant epochs in the neural time series more accurately and efficiently than conventional approaches. Therefore, TRAKR can be used as a fast and accurate tool to distinguish patterns in complex nonlinear time-series data, such as neural recordings.

Author(s):  
Meenakshi Narayan ◽  
Ann Majewicz Fey

Abstract Sensor data predictions could significantly improve the accuracy and effectiveness of modern control systems; however, existing machine learning and advanced statistical techniques to forecast time series data require significant computational resources which is not ideal for real-time applications. In this paper, we propose a novel forecasting technique called Compact Form Dynamic Linearization Model-Free Prediction (CFDL-MFP) which is derived from the existing model-free adaptive control framework. This approach enables near real-time forecasts of seconds-worth of time-series data due to its basis as an optimal control problem. The performance of the CFDL-MFP algorithm was evaluated using four real datasets including: force sensor readings from surgical needle, ECG measurements for heart rate, and atmospheric temperature and Nile water level recordings. On average, the forecast accuracy of CFDL-MFP was 28% better than the benchmark Autoregressive Integrated Moving Average (ARIMA) algorithm. The maximum computation time of CFDL-MFP was 49.1ms which was 170 times faster than ARIMA. Forecasts were best for deterministic data patterns, such as the ECG data, with a minimum average root mean squared error of (0.2±0.2).


2019 ◽  
Vol 34 (25) ◽  
pp. 1950201 ◽  
Author(s):  
Pritpal Singh ◽  
Gaurav Dhiman ◽  
Sen Guo ◽  
Ritika Maini ◽  
Harsimran Kaur ◽  
...  

The supremacy of quantum approach is able to provide the solutions which are not practically feasible on classical machines. This paper introduces a novel quantum model for time series data which depends on the appropriate length of intervals. In this study, the effects of these drawbacks are elaborately illustrated, and some significant measures to remove them are suggested, such as use of degree of membership along with mid-value of the interval. All these improvements signify the effective results in case of quantum time series, which are verified and validated with real-time datasets.


2014 ◽  
Vol 140 ◽  
pp. 704-716 ◽  
Author(s):  
J.-F. Pekel ◽  
C. Vancutsem ◽  
L. Bastin ◽  
M. Clerici ◽  
E. Vanbogaert ◽  
...  

Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1343 ◽  
Author(s):  
Robin A. Choudhury ◽  
Neil McRoberts

In a previous study, air sampling using vortex air samplers combined with species-specific amplification of pathogen DNA was carried out over two years in four or five locations in the Salinas Valley of California. The resulting time series data for the abundance of pathogen DNA trapped per day displayed complex dynamics with features of both deterministic (chaotic) and stochastic uncertainty. Methods of nonlinear time series analysis developed for the reconstruction of low dimensional attractors provided new insights into the complexity of pathogen abundance data. In particular, the analyses suggested that the length of time series data that it is practical or cost-effective to collect may limit the ability to definitively classify the uncertainty in the data. Over the two years of the study, five location/year combinations were classified as having stochastic linear dynamics and four were not. Calculation of entropy values for either the number of pathogen DNA copies or for a binary string indicating whether the pathogen abundance data were increasing revealed (1) some robust differences in the dynamics between seasons that were not obvious in the time series data themselves and (2) that the series were almost all at their theoretical maximum entropy value when considered from the simple perspective of whether instantaneous change along the sequence was positive.


Author(s):  
Rosmanjawati Binti Abdul Rahman ◽  
Seuk Wai Phoong ◽  
Mohd Tahir Ismail ◽  
Seuk Yen Phoong

2021 ◽  
Vol 5 (6) ◽  
pp. 840-854
Author(s):  
Jesmeen M. Z. H. ◽  
J. Hossen ◽  
Azlan Bin Abd. Aziz

Recent years have seen significant growth in the adoption of smart home devices. It involves a Smart Home System for better visualisation and analysis with time series. However, there are a few challenges faced by the system developers, such as data quality or data anomaly issues. These anomalies can be due to technical or non-technical faults. It is essential to detect the non-technical fault as it might incur economic cost. In this study, the main objective is to overcome the challenge of training learning models in the case of an unlabelled dataset. Another important consideration is to train the model to be able to discriminate abnormal consumption from seasonal-based consumption. This paper proposes a system using unsupervised learning for Time-Series data in the smart home environment. Initially, the model collected data from the real-time scenario. Following seasonal-based features are generated from the time-domain, followed by feature reduction technique PCA to 2-dimension data. This data then passed through four known unsupervised learning models and was evaluated using the Excess Mass and Mass-Volume method. The results concluded that LOF tends to outperform in the case of detecting anomalies in electricity consumption. The proposed model was further evaluated by benchmark anomaly dataset, and it was also proved that the system could work with the different fields containing time-series data. The model will cluster data into anomalies and not. The developed anomaly detector will detect all anomalies as soon as possible, triggering real alarms in real-time for time-series data's energy consumption. It has the capability to adapt to changing values automatically. Doi: 10.28991/esj-2021-01314 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document