scholarly journals Post-injury born oligodendrocytes integrate into the glial scar and inhibit growth of regenerating axons by premature myelination

2021 ◽  
Author(s):  
Jian Xing ◽  
Bruce A Rheaume ◽  
Juhwan Kim ◽  
Agnieszka Lukomska ◽  
Muhammad S Sajid ◽  
...  

The failure of mature central nervous system (CNS) projection neurons to regenerate axons over long distances drastically limits the recovery of functions lost after various CNS injuries and diseases. A major barrier in axon regeneration research is that, in most neurons, the axonal regenerative response to experimental treatments stalls before the axons reach their post-synaptic targets. Here, we tested the hypothesis that premature de novo myelination of the injured axons that are experimentally stimulated to regenerate stalls their growth, even after the glial scar is bypassed. To test this hypothesis, we used single cell RNA-seq (scRNA-seq) and immunohistological analysis to investigate whether post-injury born oligodendrocytes integrate into the glial scar. We also used a multiple sclerosis model of demyelination concurrently with the stimulation of axon regeneration by Pten knockdown (KD) in projection neurons after traumatic optic nerve injury. We found that post-injury born oligodendrocytes integrate into the glial scar, where they are susceptible to the demyelination treatment, which prevented premature myelination, and thereby enhanced Pten KD-stimulated axon regeneration. We also present a website for comparing the gene expression of scRNA-seq-profiled optic nerve oligodendrocytes under physiological and pathophysiological conditions.

2017 ◽  
Vol 114 (2) ◽  
pp. E209-E218 ◽  
Author(s):  
Yiqing Li ◽  
Lukas Andereggen ◽  
Kenya Yuki ◽  
Kumiko Omura ◽  
Yuqin Yin ◽  
...  

Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Surajit Bhattacharya ◽  
Hayk Barseghyan ◽  
Emmanuèle C. Délot ◽  
Eric Vilain

Abstract Background Whole genome sequencing is effective at identification of small variants, but because it is based on short reads, assessment of structural variants (SVs) is limited. The advent of Optical Genome Mapping (OGM), which utilizes long fluorescently labeled DNA molecules for de novo genome assembly and SV calling, has allowed for increased sensitivity and specificity in SV detection. However, compared to small variant annotation tools, OGM-based SV annotation software has seen little development, and currently available SV annotation tools do not provide sufficient information for determination of variant pathogenicity. Results We developed an R-based package, nanotatoR, which provides comprehensive annotation as a tool for SV classification. nanotatoR uses both external (DGV; DECIPHER; Bionano Genomics BNDB) and internal (user-defined) databases to estimate SV frequency. Human genome reference GRCh37/38-based BED files are used to annotate SVs with overlapping, upstream, and downstream genes. Overlap percentages and distances for nearest genes are calculated and can be used for filtration. A primary gene list is extracted from public databases based on the patient’s phenotype and used to filter genes overlapping SVs, providing the analyst with an easy way to prioritize variants. If available, expression of overlapping or nearby genes of interest is extracted (e.g. from an RNA-Seq dataset, allowing the user to assess the effects of SVs on the transcriptome). Most quality-control filtration parameters are customizable by the user. The output is given in an Excel file format, subdivided into multiple sheets based on SV type and inheritance pattern (INDELs, inversions, translocations, de novo, etc.). nanotatoR passed all quality and run time criteria of Bioconductor, where it was accepted in the April 2019 release. We evaluated nanotatoR’s annotation capabilities using publicly available reference datasets: the singleton sample NA12878, mapped with two types of enzyme labeling, and the NA24143 trio. nanotatoR was also able to accurately filter the known pathogenic variants in a cohort of patients with Duchenne Muscular Dystrophy for which we had previously demonstrated the diagnostic ability of OGM. Conclusions The extensive annotation enables users to rapidly identify potential pathogenic SVs, a critical step toward use of OGM in the clinical setting.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1465
Author(s):  
Ramon de Koning ◽  
Raphaël Kiekens ◽  
Mary Esther Muyoka Toili ◽  
Geert Angenon

Raffinose family oligosaccharides (RFO) play an important role in plants but are also considered to be antinutritional factors. A profound understanding of the galactinol and RFO biosynthetic gene families and the expression patterns of the individual genes is a prerequisite for the sustainable reduction of the RFO content in the seeds, without compromising normal plant development and functioning. In this paper, an overview of the annotation and genetic structure of all galactinol- and RFO biosynthesis genes is given for soybean and common bean. In common bean, three galactinol synthase genes, two raffinose synthase genes and one stachyose synthase gene were identified for the first time. To discover the expression patterns of these genes in different tissues, two expression atlases have been created through re-analysis of publicly available RNA-seq data. De novo expression analysis through an RNA-seq study during seed development of three varieties of common bean gave more insight into the expression patterns of these genes during the seed development. The results of the expression analysis suggest that different classes of galactinol- and RFO synthase genes have tissue-specific expression patterns in soybean and common bean. With the obtained knowledge, important galactinol- and RFO synthase genes that specifically play a key role in the accumulation of RFOs in the seeds are identified. These candidate genes may play a pivotal role in reducing the RFO content in the seeds of important legumes which could improve the nutritional quality of these beans and would solve the discomforts associated with their consumption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Álvaro Figueroa ◽  
Antonio Brante ◽  
Leyla Cárdenas

AbstractThe polychaete Boccardia wellingtonensis is a poecilogonous species that produces different larval types. Females may lay Type I capsules, in which only planktotrophic larvae are present, or Type III capsules that contain planktotrophic and adelphophagic larvae as well as nurse eggs. While planktotrophic larvae do not feed during encapsulation, adelphophagic larvae develop by feeding on nurse eggs and on other larvae inside the capsules and hatch at the juvenile stage. Previous works have not found differences in the morphology between the two larval types; thus, the factors explaining contrasting feeding abilities in larvae of this species are still unknown. In this paper, we use a transcriptomic approach to study the cellular and genetic mechanisms underlying the different larval trophic modes of B. wellingtonensis. By using approximately 624 million high-quality reads, we assemble the de novo transcriptome with 133,314 contigs, coding 32,390 putative proteins. We identify 5221 genes that are up-regulated in larval stages compared to their expression in adult individuals. The genetic expression profile differed between larval trophic modes, with genes involved in lipid metabolism and chaetogenesis over expressed in planktotrophic larvae. In contrast, up-regulated genes in adelphophagic larvae were associated with DNA replication and mRNA synthesis.


Author(s):  
Maria Savvaki ◽  
George Kafetzis ◽  
Stefanos‐Ioannis Kaplanis ◽  
Niki Ktena ◽  
Kostas Theodorakis ◽  
...  

Gene ◽  
2018 ◽  
Vol 645 ◽  
pp. 146-156 ◽  
Author(s):  
Soumyadev Sarkar ◽  
Somnath Chakravorty ◽  
Avishek Mukherjee ◽  
Debanjana Bhattacharya ◽  
Semantee Bhattacharya ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150273 ◽  
Author(s):  
Shivanjali Kotwal ◽  
Sanjana Kaul ◽  
Pooja Sharma ◽  
Mehak Gupta ◽  
Rama Shankar ◽  
...  

Author(s):  
Arthur English

Despite the intrinsically greater capacity for axons to regenerate in injured peripheral nerves than after injury to the central nervous system, functional recovery after most nerve injuries is very poor. A need for novel treatments that will enhance axon regeneration and improve recovery is substantial. Several such experimental treatments have been studied, each based on part of the stereotypical cellular responses that follow a nerve injury. Genetic manipulations of Schwann cells that have transformed from a myelinating to a repair phenotype that either increase their production of axon growth-promoting molecules, decrease production of inhibitors, or both result in enhanced regeneration. Local or systemic application of these molecules or small molecule mimetics of them also will promote regeneration. The success of treatments that stimulate axonal protein synthesis at the site of the nerve injury and in the growing axons, an early and important response to axon injury, is significant, as is that of manipulations of the types of immune cells that migrate into the injury site or peripheral ganglia. Modifications of the extracellular matrix through which the regenerating axons course, including the stimulation of new blood vessel formation, promotes the navigation of nascent regenerating neurites past the injury site, resulting in greater axon regeneration. Experimental induction of expression of regeneration associated gene activity in the cell bodies of the injured neurons is especially useful when regenerating axons must regenerate over long distances to reinnervate targets. The consistently most effective experimental approach to improving axon regeneration in peripheral nerves has been to increase the activity of the injured neurons, either through electrical, optical, or chemogenetic stimulation or through exercise. These activity-dependent experimental therapies show greatest promise for translation to use in patients.


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Katherine L. James ◽  
Thushan I. de Silva ◽  
Katherine Brown ◽  
Hilton Whittle ◽  
Stephen Taylor ◽  
...  

ABSTRACTAccurate determination of the genetic diversity present in the HIV quasispecies is critical for the development of a preventative vaccine: in particular, little is known about viral genetic diversity for the second type of HIV, HIV-2. A better understanding of HIV-2 biology is relevant to the HIV vaccine field because a substantial proportion of infected people experience long-term viral control, and prior HIV-2 infection has been associated with slower HIV-1 disease progression in coinfected subjects. The majority of traditional and next-generation sequencing methods have relied on target amplification prior to sequencing, introducing biases that may obscure the true signals of diversity in the viral population. Additionally, target enrichment through PCR requiresa priorisequence knowledge, which is lacking for HIV-2. Therefore, a target enrichment free method of library preparation would be valuable for the field. We applied an RNA shotgun sequencing (RNA-Seq) method without PCR amplification to cultured viral stocks and patient plasma samples from HIV-2-infected individuals. Libraries generated from total plasma RNA were analyzed with a two-step pipeline: (i)de novogenome assembly, followed by (ii) read remapping. By this approach, whole-genome sequences were generated with a 28× to 67× mean depth of coverage. Assembled reads showed a low level of GC bias, and comparison of the genome diversities at the intrahost level showed low diversity in the accessory genevpxin all patients. Our study demonstrates that RNA-Seq is a feasible full-genomede novosequencing method for blood plasma samples collected from HIV-2-infected individuals.IMPORTANCEAn accurate picture of viral genetic diversity is critical for the development of a globally effective HIV vaccine. However, sequencing strategies are often complicated by target enrichment prior to sequencing, introducing biases that can distort variant frequencies, which are not easily corrected for in downstream analyses. Additionally, detaileda priorisequence knowledge is needed to inform robust primer design when employing PCR amplification, a factor that is often lacking when working with tropical diseases localized in developing countries. Previous work has demonstrated that direct RNA shotgun sequencing (RNA-Seq) can be used to circumvent these issues for hepatitis C virus (HCV) and norovirus. We applied RNA-Seq to total RNA extracted from HIV-2 blood plasma samples, demonstrating the applicability of this technique to HIV-2 and allowing us to generate a dynamic picture of genetic diversity over the whole genome of HIV-2 in the context of low-bias sequencing.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125722 ◽  
Author(s):  
Yuli Li ◽  
Xiliang Wang ◽  
Tingting Chen ◽  
Fuwen Yao ◽  
Cuiping Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document