scholarly journals Linking common and rare disease genetics through gene regulatory networks

Author(s):  
Olivier B. Bakker ◽  
Annique Claringbould ◽  
Harm-Jan Westra ◽  
Henry H. Wiersma ◽  
Floranne Boulogne ◽  
...  

Genetic variants identified through genome-wide association studies (GWAS) are typically non-coding and exert small regulatory effects on downstream genes, but which downstream genes are ultimately impacted and how they confer risk remains mostly unclear. Conversely, variants that cause rare Mendelian diseases are often coding and have a more direct impact on disease development. We demonstrate that common and rare genetic diseases can be linked by studying the gene regulatory networks impacted by common disease-associated variants. We implemented this in the 'Downstreamer' method and applied it to 44 GWAS traits and find that predicted downstream "key genes" are enriched with Mendelian disease genes, e.g. key genes for height are enriched for genes that cause skeletal abnormalities and Ehlers-Danlos syndromes. We find that 82% of these key genes are located outside of GWAS loci, suggesting that they result from complex trans regulation rather than being impacted by disease-associated variants in cis. Finally, we discuss the challenges in reconstructing gene regulatory networks and provide a roadmap to improve identification of these highly connected genes for common traits and diseases.

2021 ◽  
Vol 12 ◽  
Author(s):  
Linzhuo Fan ◽  
Jinhong Hou ◽  
Guimin Qin

Breast cancer is one of the most common malignant tumors in women, which seriously endangers women’s health. Great advances have been made over the last decades, however, most studies predict driver genes of breast cancer using biological experiments and/or computational methods, regardless of stage information. In this study, we propose a computational framework to predict the disease genes of breast cancer based on stage-specific gene regulatory networks. Firstly, we screen out differentially expressed genes and hypomethylated/hypermethylated genes by comparing tumor samples with corresponding normal samples. Secondly, we construct three stage-specific gene regulatory networks by integrating RNA-seq profiles and TF-target pairs, and apply WGCNA to detect modules from these networks. Subsequently, we perform network topological analysis and gene set enrichment analysis. Finally, the key genes of specific modules for each stage are screened as candidate disease genes. We obtain seven stage-specific modules, and identify 20, 12, and 22 key genes for three stages, respectively. Furthermore, 55%, 83%, and 64% of the genes are associated with breast cancer, for example E2F2, E2F8, TPX2, BUB1, and CKAP2L. So it may be of great importance for further verification by cancer experts.


2021 ◽  
Author(s):  
Sophie L Farrow ◽  
William Schierding ◽  
Sreemol Gokuladhas ◽  
Evgeniia Golovina ◽  
Tayaza M. Fadason ◽  
...  

The latest meta-analysis of genome wide association studies (GWAS) identified 90 independent single nucleotide polymorphisms (SNPs) across 78 genomic regions associated with Parkinson's disease (PD), yet the mechanisms by which these variants influence the development of the disease remains largely elusive. To establish the functional gene regulatory networks associated with PD-SNPs, we utilised an approach combining spatial (chromosomal conformation capture) and functional (expression quantitative trait loci; eQTL) data. We identified 518 genes subject to regulation by 76 PD-SNPs across 49 tissues, that encompass 36 peripheral and 13 CNS tissues. Notably, one third of these genes were regulated via trans- acting mechanisms (distal; risk locus-gene separated by > 1Mb, or on different chromosomes). Of particular interest is the identification of a novel trans-eQTL-gene connection between rs10847864 and SYNJ1 in the adult brain cortex, highlighting a convergence between familial studies and PD GWAS loci for SYNJ1 (PARK20) for the first time. Furthermore, we identified 16 neuro-development specific eQTL-gene regulatory connections within the foetal cortex, consistent with hypotheses suggesting a neurodevelopmental involvement in the pathogenesis of PD. Through utilising Louvain clustering we extracted nine significant and highly intra-connected clusters within the entire gene regulatory network. The nine clusters are enriched for specific biological processes and pathways, some of which have not previously been associated with PD. Together, our results not only contribute to an overall understanding of the mechanisms and impact of specific combinations of PD-SNPs, but also highlight the potential impact gene regulatory networks may have when elucidating aetiological subtypes of PD.


2020 ◽  
Author(s):  
Mufang Ying ◽  
Peter Rehani ◽  
Panagiotis Roussos ◽  
Daifeng Wang

AbstractStrong phenotype-genotype associations have been reported across brain diseases. However, understanding underlying gene regulatory mechanisms remains challenging, especially at the cellular level. To address this, we integrated the multi-omics data at the cellular resolution of the human brain: cell-type chromatin interactions, epigenomics and single cell transcriptomics, and predicted cell-type gene regulatory networks linking transcription factors, distal regulatory elements and target genes (e.g., excitatory and inhibitory neurons, microglia, oligodendrocyte). Using these cell-type networks and disease risk variants, we further identified the cell-type disease genes and regulatory networks for schizophrenia and Alzheimer’s disease. The celltype regulatory elements (e.g., enhancers) in the networks were also found to be potential pleiotropic regulatory loci for a variety of diseases. Further enrichment analyses including gene ontology and KEGG pathways revealed potential novel cross-disease and disease-specific molecular functions, advancing knowledge on the interplays among genetic, transcriptional and epigenetic risks at the cellular resolution between neurodegenerative and neuropsychiatric diseases. Finally, we summarized our computational analyses as a general-purpose pipeline for predicting gene regulatory networks via multi-omics data.


2021 ◽  
Author(s):  
Steven Gazal ◽  
Omer Weissbrod ◽  
Farhad Hormozdiari ◽  
Kushal Dey ◽  
Joseph Nasser ◽  
...  

Although genome-wide association studies (GWAS) have identified thousands of disease-associated common SNPs, these SNPs generally do not implicate the underlying target genes, as most disease SNPs are regulatory. Many SNP-to-gene (S2G) linking strategies have been developed to link regulatory SNPs to the genes that they regulate in cis, but it is unclear how these strategies should be applied in the context of interpreting common disease risk variants. We developed a framework for evaluating and combining different S2G strategies to optimize their informativeness for common disease risk, leveraging polygenic analyses of disease heritability to define and estimate their precision and recall. We applied our framework to GWAS summary statistics for 63 diseases and complex traits (average N=314K), evaluating 50 S2G strategies. Our optimal combined S2G strategy (cS2G) included 7 constituent S2G strategies (Exon, Promoter, 2 fine-mapped cis-eQTL strategies, EpiMap enhancer-gene linking, Activity-By-Contact (ABC), and Cicero), and achieved a precision of 0.75 and a recall of 0.33, more than doubling the precision and/or recall of any individual strategy; this implies that 33% of SNP-heritability can be linked to causal genes with 75% confidence. We applied cS2G to fine-mapping results for 49 UK Biobank diseases/traits to predict 7,111 causal SNP-gene-disease triplets (with S2G-derived functional interpretation) with high confidence. Finally, we applied cS2G to genome-wide fine-mapping results for these traits (not restricted to GWAS loci) to rank genes by the heritability linked to each gene, providing an empirical assessment of disease omnigenicity; averaging across traits, we determined that the top 200 (1%) of ranked genes explained roughly half of the heritability linked to all genes. Our results highlight the benefits of our cS2G strategy in providing functional interpretation of GWAS findings; we anticipate that precision and recall will increase further under our framework as improved functional assays lead to improved S2G strategies. 


2018 ◽  
Author(s):  
Suhas Ganesh ◽  
Ahmed P Husayn ◽  
Ravi Kumar Nadella ◽  
Ravi Prabhakar More ◽  
Manasa Sheshadri ◽  
...  

AbstractIntroductionSevere Mental Illnesses (SMI), such as bipolar disorder and schizophrenia, are highly heritable, and have a complex pattern of inheritance. Genome wide association studies detect a part of the heritability, which can be attributed to common genetic variation. Examination of rare variants with Next Generation Sequencing (NGS) may add to the understanding of genetic architecture of SMIs.MethodsWe analyzed 32 ill subjects (with diagnosis of Bipolar Disorder, n=26; schizophrenia, n=4; schizoaffective disorder, n=1 schizophrenia like psychosis, n=1) from 8 multiplex families; and 33 healthy individuals by whole exome sequencing. Prioritized variants were selected by a 4-step filtering process, which included deleteriousness by 5 in silico algorithms; sharing within families, absence in the controls and rarity in South Asian sample of Exome Aggregation Consortium.ResultsWe identified a total of 42 unique rare, non-synonymous deleterious variants in this study with an average of 5 variants per family. None of the variants were shared across families, indicating a ‘private’ mutational profile. Twenty (47.6%) of the variant harboring genes identified in this sample have been previously reported to contribute to the risk of neuropsychiatric syndromes. These include genes which are related to neurodevelopmental processes, or have been implicated in different monogenic syndromes with a severe neurodevelopmental phenotype.ConclusionNGS approaches in family based studies are useful to identify novel and rare variants in genes for complex disorders like SMI. The study further validates the phenotypic burden of rare variants in Mendelian disease genes, indicating pleiotropic effects in the etiology of severe mental illnesses.


2021 ◽  
Author(s):  
Aryan Kamal ◽  
Christian Arnold ◽  
Annique Claringbould ◽  
Rim Moussa ◽  
Neha Daga ◽  
...  

Among the biggest challenges in the post-GWAS (genome-wide association studies) era is the interpretation of disease-associated genetic variants in non-coding genomic regions. Enhancers have emerged as key players in mediating the effect of genetic variants on complex traits and diseases. Their activity is regulated by a combination of transcription factors (TFs), epigenetic changes and genetic variants. Several approaches exist to link enhancers to their target genes, and others that infer TF-gene connections. However, we currently lack a framework that systematically integrates enhancers into TF-gene regulatory networks. Furthermore, we lack an unbiased way of assessing whether inferred regulatory interactions are biologically meaningful. Here we present two methods, implemented as user-friendly R-packages, for building and evaluating enhancer-mediated gene regulatory networks (eGRNs) called GRaNIE (Gene Regulatory Network Inference including Enhancers - https://git.embl.de/grp-zaugg/GRaNIE) and GRaNPA (Gene Regulatory Network Performance Analysis - https://git.embl.de/grp-zaugg/GRaNPA), respectively. GRaNIE jointly infers TF-enhancer, enhancer-gene and TF-gene interactions by integrating open chromatin data such as ATAC-Seq or H3K27ac with RNA-seq across a set of samples (e.g. individuals), and optionally also Hi-C data. GRaNPA is a general framework for evaluating the biological relevance of TF-gene GRNs by assessing their performance for predicting cell-type specific differential expression. We demonstrate the power of our tool-suite by investigating gene regulatory mechanisms in macrophages that underlie their response to infection, and their involvement in common genetic diseases including autoimmune diseases.Among the biggest challenges in the post-GWAS (genome-wide association studies) era is the interpretation of disease-associated genetic variants in non-coding genomic regions. Enhancers have emerged as key players in mediating the effect of genetic variants on complex traits and diseases. Their activity is regulated by a combination of transcription factors (TFs), epigenetic changes and genetic variants. Several approaches exist to link enhancers to their target genes, and others that infer TF-gene connections. However, we currently lack a framework that systematically integrates enhancers into TF-gene regulatory networks. Furthermore, we lack an unbiased way of assessing whether inferred regulatory interactions are biologically meaningful. Here we present two methods, implemented as user-friendly R-packages, for building and evaluating enhancer-mediated gene regulatory networks (eGRNs) called GRaNIE (Gene Regulatory Network Inference including Enhancers - https://git.embl.de/grp-zaugg/GRaNIE) and GRaNPA (Gene Regulatory Network Performance Analysis - https://git.embl.de/grp-zaugg/GRaNPA), respectively. GRaNIE jointly infers TF-enhancer, enhancer-gene and TF-gene interactions by integrating open chromatin data such as ATAC-Seq or H3K27ac with RNA-seq across a set of samples (e.g. individuals), and optionally also Hi-C data. GRaNPA is a general framework for evaluating the biological relevance of TF-gene GRNs by assessing their performance for predicting cell-type specific differential expression. We demonstrate the power of our tool-suite by investigating gene regulatory mechanisms in macrophages that underlie their response to infection, and their involvement in common genetic diseases including autoimmune diseases.Among the biggest challenges in the post-GWAS (genome-wide association studies) era is the interpretation of disease-associated genetic variants in non-coding genomic regions. Enhancers have emerged as key players in mediating the effect of genetic variants on complex traits and diseases. Their activity is regulated by a combination of transcription factors (TFs), epigenetic changes and genetic variants. Several approaches exist to link enhancers to their target genes, and others that infer TF-gene connections. However, we currently lack a framework that systematically integrates enhancers into TF-gene regulatory networks. Furthermore, we lack an unbiased way of assessing whether inferred regulatory interactions are biologically meaningful. Here we present two methods, implemented as user-friendly R-packages, for building and evaluating enhancer-mediated gene regulatory networks (eGRNs) called GRaNIE (Gene Regulatory Network Inference including Enhancers - https://git.embl.de/grp-zaugg/GRaNIE) and GRaNPA (Gene Regulatory Network Performance Analysis - https://git.embl.de/grp-zaugg/GRaNPA), respectively. GRaNIE jointly infers TF-enhancer, enhancer-gene and TF-gene interactions by integrating open chromatin data such as ATAC-Seq or H3K27ac with RNA-seq across a set of samples (e.g. individuals), and optionally also Hi-C data. GRaNPA is a general framework for evaluating the biological relevance of TF-gene GRNs by assessing their performance for predicting cell-type specific differential expression. We demonstrate the power of our tool-suite by investigating gene regulatory mechanisms in macrophages that underlie their response to infection, and their involvement in common genetic diseases including autoimmune diseases.


2021 ◽  
Author(s):  
Jacob W Freimer ◽  
Oren Shaked ◽  
Sahin Naqvi ◽  
Nasa Sinnott-Armstrong ◽  
Arwa Kathiria ◽  
...  

Complex gene regulatory networks ensure that important genes are expressed at precise levels. When gene expression is sufficiently perturbed it can lead to disease. To understand how gene expression disruptions percolate through a network, we must first map connections between regulatory genes and their downstream targets. However, we lack comprehensive knowledge of the upstream regulators of most genes. Here we developed an approach for systematic discovery of upstream regulators of critical immune factors - IL2RA, IL-2, and CTLA4 - in primary human T cells. Then, we mapped the network of these regulators' target genes and enhancers using CRISPR perturbations, RNA-Seq, and ATAC-Seq. These regulators form densely interconnected networks with extensive feedback loops. Furthermore, this network is highly enriched for immune-associated disease variants and genes. These results provide insight into how immune-associated disease genes are regulated in T cells and broader principles about the structure of human gene regulatory networks.


Sign in / Sign up

Export Citation Format

Share Document