scholarly journals Structure, receptor recognition and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein

2021 ◽  
Author(s):  
M. Alejandra Tortorici ◽  
Alexandra C Walls ◽  
Anshu Joshi ◽  
Young-Jun Park ◽  
Rachel T Eguia ◽  
...  

The recent isolation of CCoV-HuPn-2018 from a child respiratory swab indicates that more coronaviruses are spilling over to humans than previously appreciated. Here, we determined cryo-electron microscopy structures of the CCoV-HuPn-2018 spike glycoprotein trimer in two distinct conformational states and identified that it binds canine, feline and porcine aminopeptidase N (APN encoded by ANPEP) orthologs which serve as entry receptors. Introduction of an oligosaccharide at position N739 of human APN renders cells susceptible to CCoV-HuPn-2018 spike-mediated entry, suggesting that single nucleotide polymorphisms could account for the detection of this virus in some individuals. Human polyclonal plasma antibodies elicited by HCoV-229E infection and a porcine coronavirus monoclonal antibody inhibit CCoV-HuPn-2018 S-mediated entry, indicating elicitation of cross-neutralizing activity among α-coronaviruses. These data provide a blueprint of the CCoV-HuPn-2018 infection machinery, unveil the viral entry receptor and pave the way for vaccine and therapeutic development targeting this zoonotic pathogen.

Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 718
Author(s):  
Solène Besson ◽  
Charles Vragniau ◽  
Emilie Vassal-Stermann ◽  
Marie Claire Dagher ◽  
Pascal Fender

Many geometric forms are found in nature, some of them adhering to mathematical laws or amazing aesthetic rules. One of the best-known examples in microbiology is the icosahedral shape of certain viruses with 20 triangular facets and 12 edges. What is less known, however, is that a complementary object displaying 12 faces and 20 edges called a ‘dodecahedron’ can be produced in huge amounts during certain adenovirus replication cycles. The decahedron was first described more than 50 years ago in the human adenovirus (HAdV3) viral cycle. Later on, the expression of this recombinant scaffold, combined with improvements in cryo-electron microscopy, made it possible to decipher the structural determinants underlying their architecture. Recently, this particle, which mimics viral entry, was used to fish the long elusive adenovirus receptor, desmoglein-2, which serves as a cellular docking for some adenovirus serotypes. This breakthrough enabled the understanding of the physiological role played by the dodecahedral particles, showing that icosahedral and dodecahedral particles live more than a simple platonic story. All these points are developed in this review, and the potential use of the dodecahedron in therapeutic development is discussed.


QRB Discovery ◽  
2020 ◽  
Vol 1 ◽  
Author(s):  
Kaiming Zhang ◽  
Shanshan Li ◽  
Grigore Pintilie ◽  
David Chmielewski ◽  
Michael F. Schmid ◽  
...  

Abstract Human coronavirus NL63 (HCoV-NL63) is an enveloped pathogen of the family Coronaviridae that spreads worldwide and causes up to 10% of all annual respiratory diseases. HCoV-NL63 is typically associated with mild upper respiratory symptoms in children, elderly and immunocompromised individuals. It has also been shown to cause severe lower respiratory illness. NL63 shares ACE2 as a receptor for viral entry with SARS-CoV-1 and SARS-CoV-2. Here, we present the in situ structure of HCoV-NL63 spike (S) trimer at 3.4-Å resolution by single-particle cryo-EM imaging of vitrified virions without chemical fixative. It is structurally homologous to that obtained previously from the biochemically purified ectodomain of HCoV-NL63 S trimer, which displays a three-fold symmetric trimer in a single conformation. In addition to previously proposed and observed glycosylation sites, our map shows density at other sites, as well as different glycan structures. The domain arrangement within a protomer is strikingly different from that of the SARS-CoV-2 S and may explain their different requirements for activating binding to the receptor. This structure provides the basis for future studies of spike proteins with receptors, antibodies or drugs, in the native state of the coronavirus particles.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiyong Song ◽  
Yuejun Shi ◽  
Wei Ding ◽  
Tongxin Niu ◽  
Limeng Sun ◽  
...  

AbstractCoronaviruses spike (S) glycoproteins mediate viral entry into host cells by binding to host receptors. However, how the S1 subunit undergoes conformational changes for receptor recognition has not been elucidated in Alphacoronavirus. Here, we report the cryo-EM structures of the HCoV-229E S trimer in prefusion state with two conformations. The activated conformation may pose the potential exposure of the S1-RBDs by decreasing of the interaction area between the S1-RBDs and the surrounding S1-NTDs and S1-RBDs compared to the closed conformation. Furthermore, structural comparison of our structures with the previously reported HCoV-229E S structure showed that the S trimers trended to open the S2 subunit from the closed conformation to open conformation, which could promote the transition from pre- to postfusion. Our results provide insights into the mechanisms involved in S glycoprotein-mediated Alphacoronavirus entry and have implications for vaccine and therapeutic antibody design.


2004 ◽  
Vol 40 ◽  
pp. 157-167 ◽  
Author(s):  
Maria Nilsson ◽  
Karin Dahlman-Wright ◽  
Jan-Åke Gustafsson

For several decades, it has been known that oestrogens are essential for human health. The discovery that there are two oestrogen receptors (ERs), ERalpha and ERbeta, has facilitated our understanding of how the hormone exerts its physiological effects. The ERs belong to the family of ligand-activated nuclear receptors, which act by modulating the expression of target genes. Studies of ER-knockout (ERKO) mice have been instrumental in defining the relevance of a given receptor subtype in a certain tissue. Phenotypes displayed by ERKO mice suggest diseases in which dysfunctional ERs might be involved in aetiology and pathology. Association between single-nucleotide polymorphisms (SNPs) in ER genes and disease have been demonstrated in several cases. Selective ER modulators (SERMs), which are selective with regard to their effects in a certain cell type, already exist. Since oestrogen has effects in many tissues, the goal with a SERM is to provide beneficial effects in one target tissue while avoiding side effects in others. Refined SERMs will, in the future, provide improved therapeutic strategies for existing and novel indications.


2010 ◽  
Vol 34 (8) ◽  
pp. S75-S75
Author(s):  
Weifeng Zhu ◽  
Zhuoqi Liu ◽  
Daya Luo ◽  
Xinyao Wu ◽  
Fusheng Wan

2007 ◽  
Vol 28 (3) ◽  
pp. 161-164 ◽  
Author(s):  
Rosalind Arden ◽  
Nicole Harlaar ◽  
Robert Plomin

Abstract. An association between intelligence at age 7 and a set of five single-nucleotide polymorphisms (SNPs) has been identified and replicated. We used this composite SNP set to investigate whether the associations differ between boys and girls for general cognitive ability at ages 2, 3, 4, 7, 9, and 10 years. In a longitudinal community sample of British twins aged 2-10 (n > 4,000 individuals), we found that the SNP set is more strongly associated with intelligence in males than in females at ages 7, 9, and 10 and the difference is significant at 10. If this finding replicates in other studies, these results will constitute the first evidence of the same autosomal genes acting differently on intelligence in the two sexes.


Sign in / Sign up

Export Citation Format

Share Document