scholarly journals Natural killer-like B cells promote Th17 cell differentiation and exacerbate rheumatoid arthritis

2021 ◽  
Author(s):  
Ping Wang ◽  
Jing Song ◽  
Mingxin Bai ◽  
Xi Zheng ◽  
Yang Xie ◽  
...  

B cells are important participants in the pathogenesis of rheumatoid arthritis (RA). Besides classical B cells, novel B cell subsets are continually to be identified in recent years. Natural killer-like B (NKB) cells, a newly recognized B cell subset, are proved to be actively involved in the anti-infection immunity. However, their role in RA and the potential mechanism remain elusive. Here, we showed that NKB cells were expanded dramatically in collagen-induced arthritis (CIA) mice, demonstrating dynamic changes during the disease progression. These cells promoted CD4+ effector T cell proliferation and Th17 cell differentiation in vitro, while adoptive transfer of these cells exacerbated the arthritis severity of CIA mice. RNA Sequencing revealed that NKB cells displayed distinct differential gene expression profile under RA circumstance, potential perpetuating the disease progression. Moreover, the frequencies of NKB cells were significantly increased in RA patients, positively correlated with the clinical and immunological features. After effective therapy, these cells could be recovered to normal levels. Taken together, our results preliminarily revealed the pathogenic role of NKB cells in RA by promoting Th17 proinflammatory responses. Targeting these cells might provide potential therapeutic strategies for this persistent disease.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1347-1347
Author(s):  
Zhi-Zhang Yang ◽  
Anne J. Novak ◽  
Thomas E. Witzig ◽  
Stephen M. Ansell

Abstract Numerous clinical therapies have attempted to modulate tumor cell immunity, but for the most part, have proven unsuccessful. The inability to produce or augment an effective immune response is due in part to regulatory T (Treg) cells, which inhibit CD4 and CD8 T cell function. Our group has recently shown that Treg cell numbers are elevated in NHL tumors and that NHL B cells induce the development of Treg cells thereby inhibiting anti-tumor responses. The ability of NHL B cells to direct the cellular composition of their microenvironment is critical to our understanding of tumor immunity and we therefore wanted to determine if NHL B cells also directed the expansion or reduction of other T cell populations. IL-17-secreting CD4+ T cells (TH17), a newly characterized CD4+ T helper cell lineage, promote inflammation and play an important role in autoimmune disease. IL-17 has been shown to inhibit tumor cell growth suggesting a potential role for TH17 cells in anti-tumor immunity. We therefore set out to determine if TH17 cells were present in NHL tumors and whether or not their numbers were regulated by NHL B cells. Using unsorted mononuclear cells from malignant lymph nodes, we were unable to detect IL-17 expression in resting CD4+ T cells or CD4+ T cells activated with PMA/Ionomycin stimulation (less than 1%). However, IL-17-secreting CD4+ T cells could be detected in significant numbers in inflammatory tonsil and normal PBMCs. Interestingly, depletion of CD19+ NHL B cells from mononuclear cells obtained from patient biopsies resulted in detection of a clear population of IL-17-secreting CD4+ T cells (5%). These results suggest that NHL B cells suppress TH17 cell differentiation. The frequency of IL-17-secreting CD4+ T cells could not be further enhanced by the addition of exogenous TGF-b and IL-6, a cytokine combination favoring for TH17 differentiation, suggesting a further impairment of TH17 cell differentiation in the tumor microenvironment. In contrast, Foxp3 expression could be detected in resting CD4+ T cells (30%) and could be induced in CD4+CD25−Foxp3− T cells activated with TCR stimulation (28%). Contrary to the inhibition of TGF-b-mediated TH17 differentiation, Foxp3 expression could be dramatically upregulated by TGF-b in intratumoral CD4+ T cells (35%). In addition, lymphoma B cells strongly enhanced Foxp3 expression in intratumoral CD4+CD25−Foxp3−. Furthermore, when added together, the frequency of Foxp3+ T cells and Foxp3-inducible cells reached up to 60% of CD4+ T cells in tumor microenvironment of B-cell NHL. These findings suggest that the balance of effector TH17 cells and inhibitory Treg cells is disrupted in B-cell NHL and significantly favors the development of inhibitory Treg cells. Our data indicate that lymphoma B cells are key factor in regulating differentiation of intratumoral CD4+ T cells toward inhibitory CD4+ T cells.


2017 ◽  
Vol 214 (11) ◽  
pp. 3381-3398 ◽  
Author(s):  
Hyeong Su Kim ◽  
Sung Woong Jang ◽  
Wonyong Lee ◽  
Kiwan Kim ◽  
Hyogon Sohn ◽  
...  

T helper 17 (Th17) cells are a CD4+ T cell subset that produces IL-17A to mediate inflammation and autoimmunity. IL-2 inhibits Th17 cell differentiation. However, the mechanism by which IL-2 is suppressed during Th17 cell differentiation remains unclear. Here, we show that phosphatase and tensin homologue (PTEN) is a key factor that regulates Th17 cell differentiation by suppressing IL-2 production. Th17-specific Pten deletion (Ptenfl/flIl17acre) impairs Th17 cell differentiation in vitro and ameliorated symptoms of experimental autoimmune encephalomyelitis (EAE), a model of Th17-mediated autoimmune disease. Mechanistically, Pten deficiency up-regulates IL-2 and phosphorylation of STAT5, but reduces STAT3 phosphorylation, thereby inhibiting Th17 cell differentiation. PTEN inhibitors block Th17 cell differentiation in vitro and in the EAE model. Thus, PTEN plays a key role in Th17 cell differentiation by blocking IL-2 expression.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Di Hua ◽  
Jie Yang ◽  
Qinghai Meng ◽  
Yuanyuan Ling ◽  
Qin Wei ◽  
...  

Abstract Background Rheumatoid arthritis (RA) is a chronic autoimmune disease. Soufeng sanjie formula (SF), which is composed of scolopendra (dried body of Scolopendra subspinipes mutilans L. Koch), scorpion (dried body of Buthus martensii Karsch), astragali radix (dried root of Astragalus membranaceus (Fisch.) Bge), and black soybean seed coats (seed coats of Glycine max (L.) Merr), is a traditional Chinese prescription for treating RA. However, the mechanism of SF in treating RA remains unclear. This study was aim to investigate the anti-arthritic effects of SF in a collagen-induced arthritis (CIA) mouse model and explore the mechanism by which SF alleviates arthritis in CIA mice. Methods For in vivo studies, female DBA/1J mice were used to establish the CIA model, and either SF (183 or 550 mg/kg/day) or methotrexate (MTX, 920 mg/kg, twice/week) was orally administered to the mice from the day of arthritis onset. After administration for 30 days, degree of ankle joint destruction and serum levels of IgG and inflammatory cytokines were determined. The balance of Th17/Treg cells in the spleen and lymph nodes was analyzed using flow cytometry. Moreover, the expression levels of retinoic acid receptor-related orphan nuclear receptor (ROR) γt and phosphorylated STAT3 (pSTAT3, Tyr705) in the spleen were detected by immunohistochemistry. Furthermore, the effect of SF on Th17 cells differentiation in vitro was investigated in CD4+ T cells under Th17 polarization conditions. Results SF decreased the arthritis score, ameliorated paw swelling, and reduced cartilage loss in the joint of CIA mice. In addition, SF decreased the levels of bovine collagen-specific IgG in sera of CIA mice. SF decreased the levels of inflammatory cytokines (TNF-α, IL-6, and IL-17A) and increased the level of IL-10 both in the sera and the joint of CIA mice. Moreover, SF treatment rebalanced the Th17/Treg ratio in the spleen and lymph nodes of CIA mice. SF also reduced the expression levels of ROR γt and pSTAT3 (Tyr705) in the spleen of CIA mice. In vitro, SF treatment reduced Th17 cell generation and IL-17A production and inhibited the expression of RORγt, IRF4, IL-17A, and pSTAT3 (Tyr705) under Th17 polarization conditions. Conclusions Our results suggest that SF exhibits anti-arthritic effects and restores Th17/Treg homeostasis in CIA mice by inhibiting Th17 cell differentiation.


2015 ◽  
Vol 74 (Suppl 1) ◽  
pp. A3.1-A3
Author(s):  
E Baricza ◽  
E Lajkó ◽  
L Kőhidai ◽  
B Molnár-Érsek ◽  
N Marton ◽  
...  

Author(s):  
Casper Marsman ◽  
Dorit Verhoeven

Background/methods: For mechanistic studies, in vitro human B cell differentiation and generation of plasma cells are invaluable techniques. However, the heterogeneity of both T cell-dependent (TD) and T cell-independent (TI) stimuli and the disparity of culture conditions used in existing protocols makes interpretation of results challenging. The aim of the present study was to achieve the most optimal B cell differentiation conditions using isolated CD19+ B cells and PBMC cultures. We addressed multiple seeding densities, different durations of culturing and various combinations of TD stimuli and TI stimuli including B cell receptor (BCR) triggering. B cell expansion, proliferation and differentiation was analyzed after 6 and 9 days by measuring B cell proliferation and expansion, plasmablast and plasma cell formation and immunoglobulin (Ig) secretion. In addition, these conditions were extrapolated using cryopreserved cells and differentiation potential was compared. Results: This study demonstrates improved differentiation efficiency after 9 days of culturing for both B cell and PBMC cultures using CD40L and IL-21 as TD stimuli and 6 days for CpG and IL-2 as TI stimuli. We arrived at optimized protocols requiring 2500 and 25.000 B cells per culture well for TD and TI assays, respectively. The results of the PBMC cultures were highly comparable to the B cell cultures, which allows dismissal of additional B cell isolation steps prior to culturing. In these optimized TD conditions, the addition of anti-BCR showed little effect on phenotypic B cell differentiation, however it interferes with Ig secretion measurements. Addition of IL-4 to the TD stimuli showed significantly lower Ig secretion. The addition of BAFF to optimized TI conditions showed enhanced B cell differentiation and Ig secretion in B cell but not in PBMC cultures. With this approach, efficient B cell differentiation and Ig secretion was accomplished when starting from fresh or cryopreserved samples. Conclusion: Our methodology demonstrates optimized TD and TI stimulation protocols for more indepth analysis of B cell differentiation in primary human B cell and PBMC cultures while requiring low amounts of B cells, making them ideally suited for future clinical and research studies on B cell differentiation of patient samples from different cohorts of B cell-mediated diseases.


2018 ◽  
Vol 77 (12) ◽  
pp. 1773-1781 ◽  
Author(s):  
Felice Rivellese ◽  
Daniele Mauro ◽  
Alessandra Nerviani ◽  
Sara Pagani ◽  
Liliane Fossati-Jimack ◽  
...  

ObjectivesMast cells (MCs) are involved in the pathogenesis of rheumatoid arthritis (RA). However, their contribution remains controversial. To establish their role in RA, we analysed their presence in the synovium of treatment-naïve patients with early RA and their association and functional relationship with histological features of synovitis.MethodsSynovial tissue was obtained by ultrasound-guided biopsy from treatment-naïve patients with early RA (n=99). Immune cells (CD3/CD20/CD138/CD68) and their relationship with CD117+MCs in synovial tissue were analysed by immunohistochemistry (IHC) and immunofluorescence (IF). The functional involvement of MCs in ectopic lymphoid structures (ELS) was investigated in vitro, by coculturing MCs with naïve B cells and anticitrullinated protein antibodies (ACPA)-producing B cell clones, and in vivo in interleukin-27 receptor alpha (IL27ra)-deficient and control mice during antigen-induced arthritis (AIA).ResultsHigh synovial MC counts are associated with local and systemic inflammation, autoantibody positivity and high disease activity. IHC/IF showed that MCs reside at the outer border of lymphoid aggregates. Furthermore, human MCs promote the activation and differentiation of naïve B cells and induce the production of ACPA, mainly via contact-dependent interactions. In AIA, synovial MC numbers increase in IL27ra deficient mice, in association with ELS and worse disease activity.ConclusionsSynovial MCs identify early RA patients with a severe clinical form of synovitis characterised by the presence of ELS.


Blood ◽  
1994 ◽  
Vol 83 (8) ◽  
pp. 2206-2210 ◽  
Author(s):  
Y Levy ◽  
S Labaume ◽  
MC Gendron ◽  
JC Brouet

Abstract We previously showed that clonal blood B cells from patients with macroglobulinemia spontaneously differentiate in vitro to plasma cells. This process is dependent on an interleukin (IL)-6 autocrine pathway. We investigate here whether all-trans-retinoic acid (RA) interferes with B-cell differentiation either in patients with IgM gammapathy of undetermined significance (MGUS) or Waldenstrom's macroglobulinemia (WM). RA at a concentration of 10(-5) to 10(-8) mol/L inhibited by 50% to 80% the in vitro differentiation of purified B cells from four of five patients with MGUS and from one of five patients with WM as assessed by the IgM content of day 7 culture supernatants. We next determined whether this effect could be related to an inhibition of IL- 6 secretion by cultured B cells and/or a downregulation of the IL-6 receptor (IL-6R), which was constitutively expressed on patients' blood B cells. A 50% to 100% (mean, 80%) inhibition of IL-6 production was found in seven of 10 patients (five with MGUS and two with WM). The IL- 6R was no more detectable on cells from patients with MGUS after 2 days of treatment with RA and slightly downregulated in patients with WM. It was of interest that B cells susceptible to the action of RA belonged mostly to patients with IgM MGUS, which reinforces our previous data showing distinct requirements for IL-6-dependent differentiation of blood B cells from patients with VM or IgM MGUS.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 241-247 ◽  
Author(s):  
D Delia ◽  
G Cattoretti ◽  
N Polli ◽  
E Fontanella ◽  
A Aiello ◽  
...  

Abstract The CD1 cluster of monoclonal antibodies (MoAbs) CD1a, CD1b, and CD1c, identifies molecules that are differentially expressed on hematopoietic and nonhematopoietic tissues. Our earlier finding that the mantle zone (MZ) but not the germinal center (GC) of normal lymph nodes (LN) is CD1c+, CD1a-, and CD1b- prompted us to further investigate the expression of these molecules on normal, activated, and malignant B cells. We report that blood and spleen contain CD1c+ B cells that account for 49% +/- 20.4% (mean +/- SD) and 50.9% +/- 4.4% of the total B cell population, respectively. CD1a- and CD1b-specific MoAbs are unreactive with both B and T cells; these latter are CD1c- as well. When CD1c+ and CD1c- B cells are activated in vitro, the CD1c molecule is upregulated in the former subset and induced de novo in the latter. Conversely, activated blood T cells remain CD1c-. Neither CD1a nor CD1b molecules are detected on activated T and B lymphocytes. At ultrastructural level, the CD1c+ B cells exhibit distinctive features, namely, condensed chromatin with or without a nucleolus and a unique cluster of cytoplasmic vesicles and organelles; the number of nucleolated cells is higher in the spleen (95%) than in the tonsil (40%) or blood (5%). These findings further confirm the similarity between blood and MZ B cells. The CD1c expression assessed on 27 B-cell chronic lymphocytic leukemias (B-CLL) and 46 B non-Hodgkin's lymphomas (B-NHL) was detected on 41% and 32% of cases, respectively; the latter comprised four follicular and 11 diffuse histotypes. The Burkitt's lymphomas were CD1c-negative. The B-cell neoplasms were all CD1a- and, except for four with a weak cytoplasmic staining, all CD1b- as well. The clear-cut CD1c distribution in normal LN (MZ+, GC-) contrasted with the evidence that some B-NHL cells of GC origin (eg, follicular with predominantly small cleaved cells) were CD1c+. Overall, the finding that CD1c expression is restricted to a fraction of B cells present in lymphoid organs and in peripheral blood indicates that CD1c is a powerful marker for the identification and dissection of B-cell subsets whose functional properties can now be evaluated.


2006 ◽  
Vol 80 (8) ◽  
pp. 3923-3934 ◽  
Author(s):  
Vito Racanelli ◽  
Maria Antonia Frassanito ◽  
Patrizia Leone ◽  
Maria Galiano ◽  
Valli De Re ◽  
...  

ABSTRACT There is growing interest in the tendency of B cells to change their functional program in response to overwhelming antigen loading, perhaps by regulating specific parameters, such as efficiency of activation, proliferation rate, differentiation to antibody-secreting cells (ASC), and rate of cell death in culture. We show that individuals persistently infected with hepatitis C virus (HCV) carry high levels of circulating immunoglobulin G (IgG) and IgG-secreting cells (IgG-ASC). Thus, generalized polyclonal activation of B-cell functions may be supposed. While IgGs include virus-related and unrelated antibodies, IgG-ASC do not include HCV-specific plasma cells. Despite signs of widespread activation, B cells do not accumulate and memory B cells seem to be reduced in the blood of HCV-infected individuals. This apparent discrepancy may reflect the unconventional activation kinetics and functional responsiveness of the CD27+ B-cell subset in vitro. Following stimulation with T-cell-derived signals in the absence of B-cell receptor (BCR) engagement, CD27+ B cells do not expand but rapidly differentiate to secrete Ig and then undergo apoptosis. We propose that their enhanced sensitivity to BCR-independent noncognate T-cell help maintains a constant level of nonspecific serum antibodies and ASC and serves as a backup mechanism of feedback inhibition to prevent exaggerated B-cell responses that could be the cause of significant immunopathology.


Sign in / Sign up

Export Citation Format

Share Document