scholarly journals Elevated Hoxb5b expands vagal neural crest pool and blocks enteric neuronal development in zebrafish

2021 ◽  
Author(s):  
Aubrey G. Adam Howard ◽  
Aaron C Nguyen ◽  
Joshua Tworig ◽  
Priya Ravisankar ◽  
Eileen Willey Singleton ◽  
...  

Neural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb. Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b+ enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.

Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 301-305 ◽  
Author(s):  
A. Baroffio ◽  
E. Dupin ◽  
N.M. Le Douarin

The cephalic neural crest (NC) of vertebrate embryos yields a variety of cell types belonging to the neuronal, glial, melanocytic and mesectodermal lineages. Using clonal cultures of quail migrating cephalic NC cells, we demonstrated that neurons and glial cells of the peripheral nervous system can originate from the same progenitors as cartilage, one of the mesectodermal derivatives of the NC. Moreover, we obtained evidence that the migrating cephalic NC contains a few highly multipotent precursors that are common to neurons, glia, cartilage and pigment cells and which we interprete as representative of a stem cell population. In contrast, other NC cells, although provided with identical culture conditions, give rise to clones composed of only one or some of these cell types. These cells thus appear restricted in their developmental potentialities compared to multipotent cells. It is therefore proposed that, in vivo, the active proliferation of pluripotent NC cells during the migration process generates distinct subpopulations of cells that become progressively committed to different developmental fates.


Development ◽  
1991 ◽  
Vol 112 (1) ◽  
pp. 69-82 ◽  
Author(s):  
S. Boisseau ◽  
J. Nedelec ◽  
V. Poirier ◽  
G. Rougon ◽  
M. Simonneau

Using a monoclonal antibody that recognizes specifically a high polysialylated form of N-CAM (high PSA N-CAM), the temporal and spatial expression of this molecule was studied in developing spinal cord and neural crest derivatives of mouse truncal region. Temporal expression was analyzed on immunoblots of spinal cord and dorsal root ganglia (DRGs) extracts microdissected at different developmental stages. Analysis of the ratio of high PSA N-CAM to total N-CAM indicated that sialylation and desialylation are independently regulated from the expression of polypeptide chains of N-CAM. Motoneurons, dorsal root ganglia cells and commissural neurons present a homogeneous distribution of high PSA N-CAMs on both their cell bodies and their neurites. Sialylation of N-CAM can occur in neurons after their aggregation in peripheral ganglia as demonstrated for dorsal root ganglia at E12. Furthermore, peripheral ganglia express different levels of high PSA N-CAM. With in vitro models using mouse neural crest cells, we found that expression of high PSA N-CAM was restricted to cells presenting an early neuronal phenotype, suggesting a common regulation for the expression of high PSA N-CAM molecules, neurofilament proteins and sodium channels. Using perturbation experiments with endoneuraminidase, we confirmed that high PSA N-CAM molecules are involved in fasciculation and neuritic growth when neurons derived from neural crest grow on collagen substrata. However, we demonstrated that these two parameters do not appear to depend on high PSA N-CAM molecules when cells were grown on a fibronectin substratum, indicating the existence of a hierarchy among adhesion molecules.


2020 ◽  
Vol 375 (1807) ◽  
pp. 20190387 ◽  
Author(s):  
Adam Shellard ◽  
Roberto Mayor

Collective migration, the movement of groups in which individuals affect the behaviour of one another, occurs at practically every scale, from bacteria up to whole species' populations. Universal principles of collective movement can be applied at all levels. In this review, we will describe the rules governing collective motility, with a specific focus on the neural crest, an embryonic stem cell population that undergoes extensive collective migration during development. We will discuss how the underlying principles of individual cell behaviour, and those that emerge from a supracellular scale, can explain collective migration. This article is part of the theme issue ‘Multi-scale analysis and modelling of collective migration in biological systems’.


2020 ◽  
Vol 15 (8) ◽  
pp. 1934578X2093717
Author(s):  
Chengniu Wang ◽  
Jie Hui ◽  
Xinhui Zhu ◽  
Shengyu Cui ◽  
Zhiming Cui ◽  
...  

Studies have shown that lobetyolin (LBT), a component of traditional Chinese herbal medicine, has many very good biological activities and functions. However, its side effects and toxicities have not been evaluated adequately. In this work, we investigated the effects of LBT in transgenic zebrafish. LBT treatments promoted angiogenesis and led to vascular morphological malformation in zebrafish embryos, although they were normal in appearance. Interestingly, our results indicated that LBT has a function of promoting nerve growth in the embryonic stage of zebrafish. We also treated the zebrafish with combretastatin A-4 (which resulted in neuronal apoptosis) and LBT simultaneously and found that LBT promoted nerve growth at higher concentrations. Taken together, our findings clearly display that LBT efficiently promotes angiogenesis, leading to vascular morphological malformation, has low toxicity, and notably promotes neuronal development in zebrafish.


2007 ◽  
Vol 55 (10) ◽  
pp. 1075-1088 ◽  
Author(s):  
Yoko Kameda ◽  
Toshiyuki Nishimaki ◽  
Osamu Chisaka ◽  
Sachiko Iseki ◽  
Henry M. Sucov

Studies of chick–quail chimeras have reported that avian ultimobranchial C cells originate from the neural crest. It has consequently been assumed, without much supporting evidence, that mammalian thyroid C cells also originate from the neural crest. To test this notion, we employed both Connexin43-lacZ and Wnt1-Cre/R26R transgenic mice, because their neural crest cells can be marked. We also examined the immunohistochemical expression of a number of markers that identify migratory or postmigratory neural crest cells, namely, TuJ1, neurofilament 160, nestin, P75NTR, and Sox10. Moreover, we examined the expression of E-cadherin, an epithelial cell marker. At embryonic day (E)10.5, the neural crest cells densely populated the pharyngeal arches but were not distributed in the pharyngeal pouches, including the fourth pouch. At E11.5, the ultimobranchial rudiment formed from the fourth pouch and was located close to the fourth arch artery. At E13.0, this organ came into contact with the thyroid lobe, and at E13.5, it fused with this lobe. However, the ultimobranchial body was not colonized by neural crest–derived cells at any of these developmental stages. Instead, all ultimobranchial cells, as well as the epithelium of the fourth pharyngeal pouch, were intensely immunoreactive for E-cadherin. Furthermore, confocal microscopy of newborn mouse thyroid glands revealed colocalization of calcitonin and E-cadherin in the C cells. The cells, however, were not marked in the Wnt-Cre/R26R mice. These results indicated that murine thyroid C cells are derived from the endodermal epithelial cells of the fourth pharyngeal pouch and do not originate from neural crest cells. (J Histochem Cytochem 55: 1075–1088, 2007)


2020 ◽  
Vol 26 (6) ◽  
pp. 1236-1244
Author(s):  
Wagner G. Gonçalves ◽  
Kenner M. Fernandes ◽  
Ana Paula A. Silva ◽  
Danilo G. Gonçalves ◽  
Muhammad Fiaz ◽  
...  

AbstractThe carpenter ant Camponotus rufipes has intracellular bacteria in bacteriocytes scattered in the midgut epithelium, which have different amounts of endosymbionts, according to the developmental stages. However, there are no detailed data about the midgut cells in adult workers. The present work aimed to evaluate the morphology and cellular events that coordinate the abundance of endosymbionts in the midgut cells in C. rufipes workers. The midgut epithelium has digestive cells, bacteriocytes, and cells with intermediate morphology. The latter is similar to bacteriocytes, due to the abundance of endosymbionts, and similar to digestive cells, due to their microvilli. The digestive and intermediate cells are rich in autophagosomes and autolysosomes, both with bacteria debris in the lumen. These findings suggest that midgut cells of C. rufipes control the endosymbiont level by the autophagy pathway.


Science ◽  
2018 ◽  
Vol 362 (6411) ◽  
pp. eaap8236 ◽  
Author(s):  
Elijah L. Mena ◽  
Rachel A. S. Kjolby ◽  
Robert A. Saxton ◽  
Achim Werner ◽  
Brandon G. Lew ◽  
...  

Aberrant complex formation by recurrent interaction modules, such as BTB domains, leucine zippers, or coiled coils, can disrupt signal transduction, yet whether cells detect and eliminate complexes of irregular composition is unknown. By searching for regulators of the BTB family, we discovered a quality control pathway that ensures functional dimerization [dimerization quality control (DQC)]. Key to this network is the E3 ligase SCFFBXL17, which selectively binds and ubiquitylates BTB dimers of aberrant composition to trigger their clearance by proteasomal degradation. Underscoring the physiological importance of DQC, SCFFBXL17 is required for the differentiation, function, and survival of neural crest and neuronal cells. We conclude that metazoan organisms actively monitor BTB dimerization, and we predict that distinct E3 ligases similarly control complex formation by other recurrent domains.


2019 ◽  
Vol 30 (5) ◽  
pp. 2740-2754 ◽  
Author(s):  
Diliana Pecheva ◽  
Annie Lee ◽  
Joann S Poh ◽  
Yap-Seng Chong ◽  
Lynette P Shek ◽  
...  

Abstract During development, cellular events such as cell proliferation, migration, and synaptogenesis determine the structural organization of the brain. These processes are driven in part by spatiotemporally regulated gene expression. We investigated how the genetic signatures of specific neural cell types shape cortical organization of the human brain throughout infancy and childhood. Using a transcriptional atlas and in vivo magnetic resonance imaging (MRI) data, we demonstrated time-dependent associations between the expression levels of neuronal and glial genes and cortical macro- and microstructure. Neonatal cortical phenotypes were associated with prenatal glial but not neuronal gene expression. These associations reflect cell migration and proliferation during fetal development. Childhood cortical phenotypes were associated with neuronal and astrocyte gene expression related to synaptic signaling processes, reflecting the refinement of cortical connections. These findings indicate that sequential developmental stages contribute to distinct MRI measures at different time points. This helps to bridge the gap between the genetic mechanisms driving cellular changes and widely used neuroimaging techniques.


1997 ◽  
Vol 9 (12) ◽  
pp. 2596-2604 ◽  
Author(s):  
Annarosa Arcangeli ◽  
Barbara Rosati ◽  
Alessia Cherubini ◽  
Olivia Crociani ◽  
Lucrezia Fontana ◽  
...  

2013 ◽  
Vol 203 (5) ◽  
pp. 835-847 ◽  
Author(s):  
Crystal D. Rogers ◽  
Ankur Saxena ◽  
Marianne E. Bronner

The neural crest, an embryonic stem cell population, initially resides within the dorsal neural tube but subsequently undergoes an epithelial-to-mesenchymal transition (EMT) to commence migration. Although neural crest and cancer EMTs are morphologically similar, little is known regarding conservation of their underlying molecular mechanisms. We report that Sip1, which is involved in cancer EMT, plays a critical role in promoting the neural crest cell transition to a mesenchymal state. Sip1 transcripts are expressed in premigratory/migrating crest cells. After Sip1 loss, the neural crest specifier gene FoxD3 was abnormally retained in the dorsal neuroepithelium, whereas Sox10, which is normally required for emigration, was diminished. Subsequently, clumps of adherent neural crest cells remained adjacent to the neural tube and aberrantly expressed E-cadherin while lacking N-cadherin. These findings demonstrate two distinct phases of neural crest EMT, detachment and mesenchymalization, with the latter involving a novel requirement for Sip1 in regulation of cadherin expression during completion of neural crest EMT.


Sign in / Sign up

Export Citation Format

Share Document