scholarly journals Orb-dependent polyadenylation contributes to PLP expression and centrosome scaffold assembly

2021 ◽  
Author(s):  
Junnan Fang ◽  
Dorothy Lerit

As the microtubule-organizing centers (MTOCs) of most cells, centrosomes engineer the bipolar mitotic spindle required for error-free mitosis. Drosophila Pericentrin (PCNT)-like protein (PLP) is a key centrosome component that directs formation of a pericentriolar material (PCM) scaffold required for PCM organization and MTOC function. Here, we investigate the post-transcriptional regulation of plp mRNA. We identify conserved binding sites for cytoplasmic polyadenylation element binding (CPEB) proteins within the plp 3′-untranslated region and examine the role of the CPEB ortholog, oo18 RNA-binding protein (Orb), in plp mRNA regulation. Our data show Orb biochemically interacts with plp mRNA and promotes PLP protein expression. Loss of orb, but not orb2, diminishes PLP levels in embryonic extracts. Consequently, PLP localization to centrosomes and function in PCM scaffolding is compromised in orb mutant embryos, resulting in genome instability and embryonic lethality. Moreover, we find PLP over-expression can restore centrosome scaffolding and rescue the cell division defects caused by orb depletion. Our data suggest Orb modulates PLP expression at the level of plp mRNA polyadenylation and showcases the post-transcriptional regulation of core, conserved centrosomal mRNAs as critical for centrosome function.

Author(s):  
Meimei Zheng ◽  
Xu Chen ◽  
Yiqiang Cui ◽  
Wen Li ◽  
Haiqian Dai ◽  
...  

Spermatogenesis requires a large number of proteins to be properly expressed at certain stages, during which post-transcriptional regulation plays an important role. RNA-binding proteins (RBPs) are key players in post-transcriptional regulation, but only a few RBPs have been recognized and preliminary explored their function in spermatogenesis at present. Here we identified a new RBP tubby-like protein 2 (TULP2) and found three potential deleterious missense mutations of Tulp2 gene in dyszoospermia patients. Therefore, we explored the function and mechanism of TULP2 in male reproduction. TULP2 was specifically expressed in the testis and localized to spermatids. Studies on Tulp2 knockout mice demonstrated that the loss of TULP2 led to male sterility; on the one hand, increases in elongated spermatid apoptosis and restricted spermatid release resulted in a decreased sperm count; on the other hand, the abnormal differentiation of spermatids induced defective sperm tail structures and reduced ATP contents, influencing sperm motility. Transcriptome sequencing of mouse testis revealed the potential target molecular network of TULP2, which played its role in spermatogenesis by regulating specific transcripts related to the cytoskeleton, apoptosis, RNA metabolism and biosynthesis, and energy metabolism. We also explored the potential regulator of TULP2 protein function by using immunoprecipitation and mass spectrometry analysis, indicating that TUPL2 might be recognized by CCT8 and correctly folded by the CCT complex to play a role in spermiogenesis. Our results demonstrated the important role of TULP2 in spermatid differentiation and male fertility, which could provide an effective target for the clinical diagnosis and treatment of patients with oligo-astheno-teratozoospermia, and enrich the biological theory of the role of RBPs in male reproduction.


2019 ◽  
Vol 166 (5) ◽  
pp. 375-382 ◽  
Author(s):  
Yutaro Uchida ◽  
Tomoki Chiba ◽  
Ryota Kurimoto ◽  
Hiroshi Asahara

Abstract In human genome, there are approximately 1,500 RNA-binding proteins (RBPs). They can regulate mRNA stability or translational efficiency via ribosomes and these processes are known as ‘post-transcriptional regulation’. Accumulating evidences indicate that post-transcriptional regulation is the determinant of the accurate levels of cytokines mRNAs. While transcriptional regulation of cytokines mRNAs has been well studied and found to be important for the rapid induction of mRNA and regulation of the acute phase of inflammation, post-transcriptional regulation by RBPs is essential for resolving inflammation in the later phase, and their dysfunction may lead to severe autoimmune diseases such as rheumatoid arthritis or systemic lupus erythematosus. For post-transcriptional regulation, RBPs recognize and directly bind to cis-regulatory elements in 3′ untranslated region of mRNAs such as AU-rich or constitutive decay elements and play various roles. In this review, we summarize the recent findings regarding the role of RBPs in the regulation of inflammation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiaofei Xue ◽  
Fuchao Jiao ◽  
Haicheng Xu ◽  
Qiqing Jiao ◽  
Xin Zhang ◽  
...  

AbstractSeed germination is the process through which a quiescent organ reactivates its metabolism culminating with the resumption cell divisions. It is usually the growth of a plant contained within a seed and results in the formation of a seedling. Post-transcriptional regulation plays an important role in gene expression. In cells, post-transcriptional regulation is mediated by many factors, such as RNA-binding proteins, microRNAs, and the spliceosome. This review provides an overview of the relationship between seed germination and post-transcriptional regulation. It addresses the relationship between seed germination and RNA-binding proteins, microRNAs and alternative splicing. This presentation of the current state of the knowledge will promote new investigations into the relevance of the interactions between seed germination and post-transcriptional regulation in plants.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Marie-Christine Carpentier ◽  
Cécile Bousquet-Antonelli ◽  
Rémy Merret

The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5′monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5′P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5′P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.


2016 ◽  
Vol 44 (5) ◽  
pp. 1321-1337 ◽  
Author(s):  
Andrew R. Clark ◽  
Jonathan L.E. Dean

Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.


Author(s):  
Masashi Yukawa ◽  
Mitsuki Ohishi ◽  
Yusuke Yamada ◽  
Takashi Toda

Cells form a bipolar spindle during mitosis to ensure accurate chromosome segregation. Proper spindle architecture is established by a set of kinesin motors and microtubule-associated proteins. In most eukaryotes, kinesin-5 motors are essential for this process, and genetic or chemical inhibition of their activity leads to the emergence of monopolar spindles and cell death. However, these deficiencies can be rescued by simultaneous inactivation of kinesin-14 motors, as they counteract kinesin-5. We conducted detailed genetic analyses in fission yeast to understand the mechanisms driving spindle assembly in the absence of kinesin-5. Here we show that deletion of the nrp1 gene, which encodes a putative RNA-binding protein with unknown function, can rescue temperature sensitivity caused by cut7-22, a fission yeast kinesin-5 mutant. Interestingly, kinesin-14/Klp2 levels on the spindles in the cut7 mutants were significantly reduced by the nrp1 deletion, although the total levels of Klp2 and the stability of spindle microtubules remained unaffected. Moreover, RNA-binding motifs of Nrp1 are essential for its cytoplasmic localization and function. We have also found that a portion of Nrp1 is spatially and functionally sequestered by chaperone-based protein aggregates upon mild heat stress and limits cell division at high temperatures. We propose that Nrp1 might be involved in post-transcriptional regulation through its RNA-binding ability to promote the loading of Klp2 on the spindle microtubules.


Sign in / Sign up

Export Citation Format

Share Document