scholarly journals Impact of antibiotics to off-target infant gut microbiota and resistance genes in cohort studies

Author(s):  
Rebecca M Lebeaux ◽  
Juliette C Madan ◽  
Quang P Nguyen ◽  
Modupe O Coker ◽  
Erika F Dade ◽  
...  

Background: Young children are frequently exposed to antibiotics for otitis media and respiratory infections, with the potential for collateral consequences on the gut microbiome. The impact of antibiotic exposures to off-target microbes (i.e., bacteria not targeted by antibiotic treatment) and antibiotic resistance genes (ARGs) is unknown. Methods: We used metagenomic sequencing data from paired stool samples collected prior to antibiotic exposure and at 1 year from over 200 infants and a difference-in-differences approach to assess the relationship between subsequent exposures and the abundance or compositional diversity of off-target microbes and ARGs while adjusting for covariates. Results: By 1 year, the relative abundance of multiple species and ARGs differed by antibiotic exposure. Compared to infants never exposed to antibiotics, Bacteroides vulgatus relative abundance increased by 1.72% (95%CI:0.19,3.24) while Bacteroides fragilis decreased by 1.56% (95%CI:-4.32,1.21). Bifidobacterium species also exhibited opposing trends suggesting differential antibiotic selection. Overall, antibiotic exposure was associated with a dose-dependent decrease in alpha diversity of off-target microbes. ARGs associated with antibiotic exposure included class A beta-lactamase gene CfxA6. Among infants attending day care, Escherichia coli and ARG abundance were both positively associated with antibiotic use. Conclusion: Further quantifying impacts to off-target microbes and ARGs has implications for antibiotic stewardship

2021 ◽  
Author(s):  
Bruna Verônica Azevedo Gois ◽  
Kenny da Costa Pinheiro ◽  
Wylerson Guimarães Nogueira ◽  
Andressa de Oliveira Aragão ◽  
Ana Lídia Cavalcante Queiroz ◽  
...  

Abstract Background: Despite the importance of understanding the ecology of freshwater viruses, there are not many studies on the issue when compared to marine viruses. The microbiological interactions that occur in these environments are still poorly known, especially between bacteriophages and their host bacteria, as well as between cyanophages and cyanobacteria. Lake Bologna, from Belém, capital of the Brazilian State of Pará, is a source of water that supplies the city and its metropolitan region, yet it remains unexplored regarding the contents of its virome and viral diversity composition. Therefore, this work's main aim is to clarify in terms of taxonomic diversity the species of DNA viruses that are present in this lake, especially bacteriophages and cyanophages, since they can act both as transducers of resistance genes and reporters of water quality for human consumption. Results: For this work, we used the metagenomic sequencing data generated by Alves et al. (2020), and we analyzed it at the taxonomic level using the tools Kraken2, Bracken, and Pavian; later, the data was assembled using Genome Detective, which performs assembly of viruses. The results observed in this work suggest the existence of a widely diverse viral community and an established microbial phage regulated dynamics in the Lake Bolonha. Conclusions: This work is the first-ever to describe the virome of Lake Bolonha using a metagenomic approach based on high-throughput sequencing, as it contributes to the understanding of water-related public health concerns regarding the spreading of antibiotic resistance genes and population control of native bacteria and cyanobacteria.


2021 ◽  
Author(s):  
Xiang-Long Zhao ◽  
Zhao Qi ◽  
Hao Huang ◽  
Jian Tu ◽  
Xiang-Jun Song ◽  
...  

Abstract Microbial indicators are often used as alternative indicators of microbial safety in water. However, information regarding the correlation between microbial indicators and ecotoxicological factors such as potential pathogens and antibiotic resistance genes (ARGs) in anthropogenically impacted waters remains highly limited. Combining 16S rRNA and metagenomic sequencing data, we investigated the composition of bacterial community and potential pathogens, ARGs diversity, ARGs host and horizontal gene transfer (HGT) potential in water samples under the influence of different exogenous pollutants in Chaohu Lake basin. The water body that receives a large amount of domestic sewage showed a significant decrease in microbial diversity and a significant enrichment of potential pathogens. A total of 14 main types and 461 subtypes of ARGs were detected in all samples, dominated by multidrug resistance (MDR) efflux pump (53.6%), aminoglycoside (6.0%), fluoroquinolone (5.8%) and polymyxin (5.46%). Host-tracking analysis showed that Escherichia coli and Bacteroides graminisolvens carried a wealth of ARG subtypes. Correlation analysis showed that potential pathogens and some ARG subtypes such as dfrE, sul2, PmrE exhibits significant correlation with indicator bacteria. Overall, next-generation sequencing (NGS) has the ability to conduct preliminary surveys of environmental samples to access potential health risks, thus providing ideas for water resources management.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lifang Luo ◽  
Junqin Yao ◽  
Weiguo Liu ◽  
Lixin Yang ◽  
Hailong Li ◽  
...  

AbstractOxidation ditches (ODs) and membrane bioreactors (MBRs) are widely used in wastewater treatment plants (WWTPs) with bacteria and antibiotic resistance genes (ARGs) running through the whole system. In this study, metagenomic sequencing was used to compare the bacterial communities and ARGs in the OD and MBR systems, which received the same influent in a WWTP located in Xinjiang, China. The results showed that the removal efficiency of pollutants by the MBR process was better than that by the OD process. The composition and the relative abundance of bacteria in activated sludge were similar at the phylum and genus levels and were not affected by process type. Multidrug, fluoroquinolones and peptides were the main ARG types for the two processes, with macB being the main ARG subtype, and the relative abundance of ARG subtypes in MBR effluent was much higher than that in the OD effluent. The mobile genetic elements (MGEs) in the activated sludge were mainly transposons (tnpA) and insertion sequences (ISs; IS91). These results provide a theoretical basis for process selection and controlling the spread of ARGs.


2020 ◽  
Author(s):  
Zhen Zhu ◽  
Mingze Cao ◽  
Weiwei Wang ◽  
Liwei Zhang ◽  
Tenghe Ma ◽  
...  

Abstract Background: Antibiotic resistance genes (ARGs) have become recognized contaminants and pose a high public health risk. The animal gut microbiota is a reservoir of ARGs, but the knowledge of the origin and dissemination of ARGs remains unclear.Methods: 30 of the fecal samples were obtained from bovine and were immediately frozen in liquid nitrogen. Total metagenomic DNA was extracted by cetyltrimethylammonium bromide (CTAB) method and sequenced by Illumina HiSeq X Ten platform. After quality control and assembled, the sequence were annotated by NR, CARD and ISfinder. Statistical analysis was performed using SPSS 19.0.Results: A total of 42 ARG types were detected by annotating the metagenomic sequencing data from the Comprehensive Antibiotic Resistance Database (CARD). We found that the diversity and abundance of ARGs in individual yaks were significantly lower than those in dairy and beef cattle. The results of heat map and single-nucleotide polymorphism (SNP) clustering suggest that ARGs from dairy and beef cattle are more similar, while those from yaks cluster separately. Conclusion: The long-term use of antibiotics may contribute to this difference, suggesting that antibiotic consumption is the main cause of ARG prevalence. Furthermore, abundant insertions and integrations were also found in this study, signifying a strong potential for horizontal transfer of ARGs among microbes, especially pathogens.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Ishi Keenum ◽  
Robert K. Williams ◽  
Partha Ray ◽  
Emily D. Garner ◽  
Katharine F. Knowlton ◽  
...  

Abstract Background Research is needed to delineate the relative and combined effects of different antibiotic administration and manure management practices in either amplifying or attenuating the potential for antibiotic resistance to spread. Here, we carried out a comprehensive parallel examination of the effects of small-scale (> 55 °C × 3 days) static and turned composting of manures from dairy and beef cattle collected during standard antibiotic administration (cephapirin/pirlimycin or sulfamethazine/chlortetracycline/tylosin, respectively), versus from untreated cattle, on “resistomes” (total antibiotic resistance genes (ARGs) determined via shotgun metagenomic sequencing), bacterial microbiota, and indicator ARGs enumerated via quantitative polymerase chain reaction. To gain insight into the role of the thermophilic phase, compost was also externally heated to > 55 °C × 15 days. Results Progression of composting with time and succession of the corresponding bacterial microbiota was the overarching driver of the resistome composition (ANOSIM; R = 0.424, p = 0.001, respectively) in all composts at the small-scale. Reduction in relative abundance (16S rRNA gene normalized) of total ARGs in finished compost (day 42) versus day 0 was noted across all conditions (ANOSIM; R = 0.728, p = 0.001), except when externally heated. Sul1, intI1, beta-lactam ARGs, and plasmid-associated genes increased in all finished composts as compared with the initial condition. External heating more effectively reduced certain clinically relevant ARGs (blaOXA, blaCARB), fecal coliforms, and resistome risk scores, which take into account putative pathogen annotations. When manure was collected during antibiotic administration, taxonomic composition of the compost was distinct according to nonmetric multidimensional analysis and tet(W) decayed faster in the dairy manure with antibiotic condition and slower in the beef manure with antibiotic condition. Conclusions This comprehensive, integrated study revealed that composting had a dominant effect on corresponding resistome composition, while little difference was noted as a function of collecting manure during antibiotic administration. Reduction in total ARGs, tet(W), and resistome risk suggested that composting reduced some potential for antibiotic resistance to spread, but the increase and persistence of other indicators of antibiotic resistance were concerning. Results indicate that composting guidelines intended for pathogen reduction do not necessarily provide a comprehensive barrier to ARGs or their mobility prior to land application and additional mitigation measures should be considered.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2139
Author(s):  
Feilong Deng ◽  
Yushan Li ◽  
Yunjuan Peng ◽  
Xiaoyuan Wei ◽  
Xiaofan Wang ◽  
...  

Archaea are an essential class of gut microorganisms in humans and animals. Despite the substantial progress in gut microbiome research in the last decade, most studies have focused on bacteria, and little is known about archaea in mammals. In this study, we investigated the composition, diversity, and functional potential of gut archaeal communities in pigs by re-analyzing a published metagenomic dataset including a total of 276 fecal samples from three countries: China (n = 76), Denmark (n = 100), and France (n = 100). For alpha diversity (Shannon Index) of the archaeal communities, Chinese pigs were less diverse than Danish and French pigs (p < 0.001). Consistently, Chinese pigs also possessed different archaeal community structures from the other two groups based on the Bray–Curtis distance matrix. Methanobrevibacter was the most dominant archaeal genus in Chinese pigs (44.94%) and French pigs (15.41%), while Candidatus methanomethylophilus was the most predominant in Danish pigs (15.71%). At the species level, the relative abundance of Candidatus methanomethylophilus alvus, Natrialbaceae archaeon XQ INN 246, and Methanobrevibacter gottschalkii were greatest in Danish, French, and Chinese pigs with a relative abundance of 14.32, 11.67, and 16.28%, respectively. In terms of metabolic potential, the top three pathways in the archaeal communities included the MetaCyc pathway related to the biosynthesis of L-valine, L-isoleucine, and isobutanol. Interestingly, the pathway related to hydrogen consumption (METHANOGENESIS-PWY) was only observed in archaeal reads, while the pathways participating in hydrogen production (FERMENTATION-PWY and PWY4LZ-257) were only detected in bacterial reads. Archaeal communities also possessed CAZyme gene families, with the top five being AA3, GH43, GT2, AA6, and CE9. In terms of antibiotic resistance genes (ARGs), the class of multidrug resistance was the most abundant ARG, accounting for 87.41% of archaeal ARG hits. Our study reveals the diverse composition and metabolic functions of archaea in pigs, suggesting that archaea might play important roles in swine nutrition and metabolism.


2021 ◽  
Author(s):  
Miguel Uyaguari

Abstract Background: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. Results: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%).The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14x104 gene copies/mL) followed by intI3 (4.97x103 gene copies/mL) while intI2 abundance remained low (6.4x101 gene copies/mL).Conclusions: The wastewater treatment plant successfully reduced the abundance of bacteria, DNA bacteriophages, and antibiotic resistance genes although many of them still remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.


2021 ◽  
Author(s):  
Chen Zhao ◽  
Chenyu Li ◽  
Xiaoming Wang ◽  
Zhuosong Cao ◽  
Chao Gao ◽  
...  

Abstract Background: Antibiotic resistance genes (ARGs) have become an important public health problem. In this study, we used metagenomic sequencing to analyze the composition of ARGs in certain original habitats of northeast China, comprising three different rivers and riverbank soils of the Heilongjiang River, Tumen River, and Yalu River. Results: Twenty types of ARG were detected in every water sample. The major ARGs were multidrug resistance genes, at approximately 0.5 copies/16s rRNA, accounting for 57.5% of the total ARG abundance. The abundance of multidrug, bacitracin, beta-lactam, macrolide‑lincosamide‑streptogramin, sulfonamide, fosmidomycin, and polymyxin resistance genes covered 96.9% of the total ARG abundance. No significant ecological boundary of ARG diversity was observed. The compositions of the resistance genes in the three rivers were very similar to each other, and 92.1% of ARG subtypes were shared by all water samples. Except for vancomycin resistance genes, almost all ARGs in riverbank soils were detected in the river water. About 31.05% ARGs were carried by Pseudomonas. Opportunistic pathogenic bacteria carrying resistance genes were mainly related to diarrhea and respiratory infections. Multidrug and beta-lactam resistance genes correlated positively with mobile genetic elements (MGEs), indicating a potential risk of diffusion.Conclusions: The composition of ARGs in three different rivers was similar, indicating that climate played an important role in ARG occurrence. ARG subtypes in river water were almost completely the same as those in riverbank soil. ARGs had no significant geographical distribution characteristics. Many ARGs were carried by human pathogenic bacteria related to human diarrhea and respiratory infections, such as Pseudomonas aeruginosa and Aeromonas caviae. In general, our results provide a valuable dataset of river water ARG distribution in northeast China. The related ecological geography distribution characteristics should be further explored.


Sign in / Sign up

Export Citation Format

Share Document