scholarly journals Hypnosis Measuring: The Pilot Study of Machine Learning Approach for Instrumental Control of the Trance Dynamics in Patients with Anxiety and Depressive Disorders

2021 ◽  
Author(s):  
Nikita V Obukhov ◽  
Irina E Solnyshkina ◽  
Tatiana G Siourdaki

Having measurable physiological correlates, hypnosis should be measurable generally itself. The precise, continual, quantitative assessment (versus phenomenological one) of a current trance level (i.e., "depth") is possible only instrumentally. We've shown that electrophysiological patterns of a trance are stable from session to session, but significantly vary among subjects. Hence, to measure the trance level individually we proposed the following Brain-Computer interface approach and tested it on the 27 video-EEG recordings of 8 outpatients with anxiety and depressive disorders: on the data of the first session using Common Spatial Pattern filtering and Linear Discriminant Analysis classification, we trained the predictive models to discriminate conditions of "a wakefulness" and "a deep trance" and applied them to the subsequent sessions to predict the deep trance probability (in fact, to measure the trance level). We obtained integrative individualized continuously changing parameter reflecting the hypnosis level graphically online, providing the trance microdynamics control. The classification accuracy was high, especially while filtering the signal in 1.5-14 and 4-15 Hz. The applications and perspectives are being discussed.

2021 ◽  
Vol 11 (2) ◽  
pp. 114
Author(s):  
Suhyuk Chi ◽  
Moon-Soo Lee

Major depressive disorder (MDD) is associated with increased suicidal risk and reduced productivity at work. Neuroimmunology, the study of the immune system and nervous system, provides further insight into the pathogenesis and outcome of MDD. Cytokines are the main modulators of neuroimmunology, and their levels are somewhat entangled in depressive disorders as they affect depressive symptoms and are affected by antidepressant treatment. The use of cytokine-derived medication as a treatment option for MDD is currently a topic of interest. Although not very promising, cytokines are also considered as possible prognostic or diagnostic markers for depression. The machine learning approach is a powerful tool for pattern recognition and has been used in psychiatry for finding useful patterns in data that have translational meaning and can be incorporated in daily clinical practice. This review focuses on the current knowledge of neuroimmunology and depression and the possible use of machine learning to widen our understanding of the topic.


Author(s):  
Vidya K. Nandikolla ◽  
Travis Van Leeuwen

Abstract A brain–computer interface (BCI)-based controller bridges the gap between smart wheelchairs and physically impaired persons with severe conditions. This paper presents the design of a hybrid BCI controller with six classifiers using an electroencephalogram (EEG) headset to detect hand motor imagery (MI) and jaw electromyography (EMG) signals. A BCI controller and semi-autonomous system is developed to control a smart wheelchair in conjunction with its semi-autonomous capabilities. For data acquisition, an openvibe system and a commercial grade EEG headset are used. A multiple common spatial pattern (CSP) filter and Linear discriminant analysis (LDA) classifier system is used to process and classify the user's brain activity. To convert the classifier data into a signal that is compatible with the semi-autonomous wheelchair system, a fuzzy logic controller (FLC) is integrated in LabVIEW. Subjects are trained to use the BCI system and the classifier profiles are optimized for each user and the results are analyzed for this study. The openvibe “Replay” script and recorded training data are used to evaluate the performance of the controller scheme. For each subject, positive, negative, and false-positive executions are recorded. During the initial testing phase, the positive rates for subjects were strong, but false-positive rates were too high to be used. Therefore, the design is iterated by changing the rules of the FLC and configuration of the LabVIEW script. The configuration with the best positive rates for turn executions is chosen where the average positive rate for turning is 0.68 for subject 1 and 0.64 for subject 2.


2016 ◽  
Vol 27 (02) ◽  
pp. 1650032 ◽  
Author(s):  
Yu Zhang ◽  
Yu Wang ◽  
Jing Jin ◽  
Xingyu Wang

Effective common spatial pattern (CSP) feature extraction for motor imagery (MI) electroencephalogram (EEG) recordings usually depends on the filter band selection to a large extent. Subband optimization has been suggested to enhance classification accuracy of MI. Accordingly, this study introduces a new method that implements sparse Bayesian learning of frequency bands (named SBLFB) from EEG for MI classification. CSP features are extracted on a set of signals that are generated by a filter bank with multiple overlapping subbands from raw EEG data. Sparse Bayesian learning is then exploited to implement selection of significant features with a linear discriminant criterion for classification. The effectiveness of SBLFB is demonstrated on the BCI Competition IV IIb dataset, in comparison with several other competing methods. Experimental results indicate that the SBLFB method is promising for development of an effective classifier to improve MI classification.


2013 ◽  
Vol 459 ◽  
pp. 228-231 ◽  
Author(s):  
Hao Yang ◽  
Song Wu

Electroencephalogram (EEG) is generally used in Brain-Computer Interface (BCI) applications to measure the brain signals. However, the multichannel EEG signals characterized by unrelated and redundant features will deteriorate the classification accuracy. This paper presents a method based on common spatial pattern (CSP) for feature extraction and support vector machine with genetic algorithm (SVM-GA) as a classifier, the GA is used to optimize the kernel parameters setting. The proposed algorithm is performed on data set Iva of BCI Competition III. Results show that the proposed method outperforms the conventional linear discriminant analysis (LDA) in average classification performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Bartosz Binias ◽  
Dariusz Myszor ◽  
Krzysztof A. Cyran

This work considers the problem of utilizing electroencephalographic signals for use in systems designed for monitoring and enhancing the performance of aircraft pilots. Systems with such capabilities are generally referred to as cognitive cockpits. This article provides a description of the potential that is carried by such systems, especially in terms of increasing flight safety. Additionally, a neuropsychological background of the problem is presented. Conducted research was focused mainly on the problem of discrimination between states of brain activity related to idle but focused anticipation of visual cue and reaction to it. Especially, a problem of selecting a proper classification algorithm for such problems is being examined. For that purpose an experiment involving 10 subjects was planned and conducted. Experimental electroencephalographic data was acquired using an Emotiv EPOC+ headset. Proposed methodology involved use of a popular method in biomedical signal processing, the Common Spatial Pattern, extraction of bandpower features, and an extensive test of different classification algorithms, such as Linear Discriminant Analysis, k-nearest neighbors, and Support Vector Machines with linear and radial basis function kernels, Random Forests, and Artificial Neural Networks.


Sign in / Sign up

Export Citation Format

Share Document