scholarly journals Non-conventional serine protease activity of the CXC chemokine-cleaving streptococcal enzyme, SpyCEP

2021 ◽  
Author(s):  
Max Pearson ◽  
Carl Haslam ◽  
Andrew Fosberry ◽  
Emma J Jones ◽  
Mark Reglinski ◽  
...  

The Streptococcus pyogenes cell envelope protease (SpyCEP) is a vital virulence factor in streptococcal pathogenesis. Despite its key role in disease progression and strong association with invasive disease, little is known about the enzymatic function beyond the ELR+ CXC chemokine substrate range. We utilised multiple SpyCEP constructs to interrogate the protein domains and catalytic residues necessary for enzyme function. We leveraged high-throughput mass spectrometry to describe the Michaelis-Menton parameters of active SpyCEP, revealing a Michaelis-Menton constant (KM) of 53.49 nM and a turnover of 1.34 molecules per second, for the natural chemokine substrate CXCL8. Unexpectedly, we found that an N-terminally-truncated SpyCEP C-terminal construct consisting of only the H279 and S617 catalytic dyad had specific CXCL8 cleaving activity, albeit with a reduced substrate turnover of 2.45 molecules per hour, representing a ~2000-fold reduction in activity. In contrast, the KM of the C-terminal SpyCEP construct and full-length enzyme did not differ. We conclude that the SpyCEP C-terminus plays a key role in substrate binding and recognition with key implications for both current and future streptococcal vaccine designs.

2019 ◽  
Vol 38 (12) ◽  
pp. 1168-1172
Author(s):  
Viviana Sánchez-Encinales ◽  
Guillermo Ludwig ◽  
Esther Tamayo ◽  
Jose Maria García-Arenzana ◽  
Carmen Muñoz-Almagro ◽  
...  

2008 ◽  
Vol 190 (11) ◽  
pp. 4001-4016 ◽  
Author(s):  
Wallace A. Kaserer ◽  
Xiaoxu Jiang ◽  
Qiaobin Xiao ◽  
Daniel C. Scott ◽  
Matthew Bauler ◽  
...  

ABSTRACT We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB + bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepAΔ3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins.


2009 ◽  
Vol 191 (8) ◽  
pp. 2815-2825 ◽  
Author(s):  
Mark D. Gonzalez ◽  
Jon Beckwith

ABSTRACT Cell division in bacteria requires the coordinated action of a set of proteins, the divisome, for proper constriction of the cell envelope. Multiple protein-protein interactions are required for assembly of a stable divisome. Within the Escherichia coli divisome is a conserved subcomplex of inner membrane proteins, the FtsB/FtsL/FtsQ complex, which is necessary for linking the upstream division proteins, which are predominantly cytoplasmic, with the downstream division proteins, which are predominantly periplasmic. FtsB and FtsL are small bitopic membrane proteins with predicted coiled-coil motifs, which themselves form a stable subcomplex that can recruit downstream division proteins independently of FtsQ; however, the details of how FtsB and FtsL interact together and with other proteins remain to be characterized. Despite the small size of FtsB, we identified separate interaction domains of FtsB that are required for interaction with FtsL and FtsQ. The N-terminal half of FtsB is necessary for interaction with FtsL and sufficient, when in complex with FtsL, for recruitment of downstream division proteins, while a portion of the FtsB C terminus is necessary for interaction with FtsQ. These properties of FtsB support the proposal that its main function is as part of a molecular scaffold to allow for proper formation of the divisome.


2009 ◽  
Vol 77 (12) ◽  
pp. 5411-5417 ◽  
Author(s):  
Kyle V. Kappeler ◽  
Srivishnupriya Anbalagan ◽  
Alexander V. Dmitriev ◽  
Emily J. McDowell ◽  
Melody N. Neely ◽  
...  

ABSTRACT The transcriptional regulator Rgg of Streptococcus pyogenes is essential for expression of the secreted cysteine protease SpeB. Although all isolates of S. pyogenes possess the speB gene, not all of them produce the protein in vitro. In a murine model of infection, the absence of SpeB production is associated with invasive disease. We speculated that naturally occurring mutations in rgg, which would also abrogate SpeB production, may be present in invasive isolates of S. pyogenes. Examination of the inferred Rgg sequences available in public databases revealed that the rgg gene in strain MGAS315 (a serotype M3 strain associated with invasive disease) encodes a proline at amino acid position 103 (Rgg103P); in contrast, all other strains encode a serine at this position (Rgg103S). A caseinolytic assay and Western blotting indicated that strain MGAS315 does not produce SpeB in vitro. Gene-swapping experiments showed that the rgg gene of MGAS315 is solely responsible for the lack of SpeB expression. In contrast to Rgg103S, Rgg103P does not bind to the speB promoter in gel shift assays, which correlates with a lack of speB expression. Despite its inability to activate speB expression, Rgg103P retains the ability to bind to DNA upstream of norA and to influence its expression. Overall, this study illustrates how variation at the rgg locus may contribute to the phenotypic diversity of S. pyogenes.


2014 ◽  
Vol 82 (12) ◽  
pp. 5293-5307 ◽  
Author(s):  
Marina Falaleeva ◽  
Oliwia W. Zurek ◽  
Robert L. Watkins ◽  
Robert W. Reed ◽  
Hadeel Ali ◽  
...  

ABSTRACTThe important human pathogenStreptococcus pyogenes(group AStreptococcus[GAS]) produces a hyaluronic acid (HA) capsule that plays critical roles in immune evasion. Previous studies showed that thehasABCoperon encoding the capsule biosynthesis enzymes is under the control of a single promoter, P1, which is negatively regulated by the two-component regulatory system CovR/S. In this work, we characterize the sequence upstream of P1 and identify a novel regulatory region controlling transcription of the capsule biosynthesis operon in the M1 serotype strain MGAS2221. This region consists of a promoter, P2, which initiates transcription of a novel small RNA, HasS, an intrinsic transcriptional terminator that inefficiently terminates HasS, permitting read-through transcription ofhasABC, and a putative promoter which lies upstream of P2. Electrophoretic mobility shift assays, quantitative reverse transcription-PCR, and transcriptional reporter data identified CovR as a negative regulator of P2. We found that the P1 and P2 promoters are completely repressed by CovR, and capsule expression is regulated by the putative promoter upstream of P2. Deletion ofhasSor of the terminator eliminates CovR-binding sequences, relieving repression and increasing read-through,hasAtranscription, and capsule production. Sequence analysis of 44 GAS genomes revealed a high level of polymorphism in the HasS sequence region. Most of the HasS variations were located in the terminator sequences, suggesting that this region is under strong selective pressure. We discovered that the terminator deletion mutant is highly resistant to neutrophil-mediated killing and is significantly more virulent in a mouse model of GAS invasive disease than the wild-type strain. Together, these results are consistent with the naturally occurring mutations in this region modulating GAS virulence.


2004 ◽  
Vol 186 (17) ◽  
pp. 5865-5875 ◽  
Author(s):  
Timothy C. Barnett ◽  
Aman R. Patel ◽  
June R. Scott

ABSTRACT The important human pathogen Streptococcus pyogenes (group A streptococcus GAS), requires several surface proteins to interact with its human host. Many of these are covalently linked by a sortase enzyme to the cell wall via a C-terminal LPXTG motif. This motif is followed by a hydrophobic region and charged C terminus, which are thought to retard the protein in the cell membrane to facilitate recognition by the membrane-localized sortase. Previously, we identified two sortase enzymes in GAS. SrtA is found in all GAS strains and anchors most proteins containing LPXTG, while SrtB is present only in some strains and anchors a subset of LPXTG-containing proteins. We now report the presence of a third sortase in most strains of GAS, SrtC. We show that SrtC mediates attachment of a protein with a QVPTGV motif preceding a hydrophobic region and charged tail. We also demonstrate that the QVPTGV sequence is a substrate for anchoring of this protein by SrtC. Furthermore, replacing this motif with LPSTGE, found in the SrtA-anchored M protein of GAS, leads to SrtA-dependent secretion of the protein but does not lead to its anchoring by SrtA. We conclude that srtC encodes a novel sortase that anchors a protein containing a QVPTGV motif to the surface of GAS.


Vaccine ◽  
2009 ◽  
Vol 27 (36) ◽  
pp. 4923-4929 ◽  
Author(s):  
Claire E. Turner ◽  
Prathiba Kurupati ◽  
Siouxsie Wiles ◽  
Robert J. Edwards ◽  
Shiranee Sriskandan

Sign in / Sign up

Export Citation Format

Share Document