scholarly journals NetrinG1+ cancer-associated fibroblasts generate unique extracellular vesicles that support the survival of pancreatic cancer cells under nutritional stress

2021 ◽  
Author(s):  
Kristopher S Raghavan ◽  
Ralph Francescone ◽  
Janusz Franco-Barraza ◽  
Jaye C Gardiner ◽  
Débora B Vendramini-Costa ◽  
...  

It is projected that, in 5 years, pancreatic cancer will become the second deadliest cancer in the United States. A unique aspect of pancreatic ductal adenocarcinoma (PDAC) is its stroma; rich in cancer-associated fibroblasts (CAFs) and a dense CAF-generated extracellular matrix (ECM). This fibrous stroma, known as desmoplasia, causes the collapse of local blood vessels rendering a nutrient-deprived milieu. Hence, PDAC cells are nurtured by local CAF-secreted products, which include, among others, CAF-generated small extracellular vesicles (sEVs). It is well-accepted that upon culturing functionally tumor-promoting CAFs under pathophysiological-relevant conditions (e.g., within self-produced ECM), these cells express NetrinG1 (NetG1) and sustain endosomal pools rich in active α5β1-integrin, traits indicative of poor patient survival. We herein report that NetG1+ CAFs generate sEVs that rescue PDAC cells from nutrient-deprived induced apoptosis. Two unique sEVs, NetG1+ and α5β1-integrin+, were uncovered. The former constitutes cargo of CAF-generated exomeres, and the latter is detected in classic exosomes. Proteomic and metabolomic analyses showed that the sEV-dependent PDAC survival is, at least in part, dictated by the cargo packaged within sEVs in a NetG1-dependent manner. Indeed, despite producing a similar number of vesicles, selected key proteins and metabolites (e.g., glutamine) were incorporated within the unique sEVs. Finally, we found that NetG1 and α5β1-integrin were detected in sEVs collected from plasma of PDAC patients, while their concomitant levels were significantly lower in plasma of sex/age-matched healthy donors. The discovery of these tumor-supporting CAF sEVs opens a new investigative avenue in tumor-stroma interactions and stroma staging detection.

Author(s):  
Huiming Chen ◽  
Junfeng Zhao ◽  
Ningning Jiang ◽  
Zheng Wang ◽  
Chang Liu

Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, with a 5-year survival rate of less than 10% because of the limited knowledge of tumor-promoting factors and their underlying mechanism. Diabetes mellitus (DM) and hyperglycemia are risk factors for many cancers, including PDAC, that modulate multiple downstream signaling pathways, such as the wingless/integrated (Wnt)/β-catenin signaling pathway. However, whether hyperglycemia promotes PDAC initiation and progression by activating the Wnt/β-catenin signaling pathway remains unclear. Methods: In this study, we used bioinformatics analysis and clinical specimen analysis to evaluate the activation states of the Wnt/βcatenin signaling pathway. In addition, colony formation assays, Transwell assays and wound-healing assays were used to evaluate the malignant biological behaviors of pancreatic cancer cells (PCs) under hyperglycemic conditions. To describe the effects of hyperglycemia and the Wnt/β-catenin signaling pathway on the initiation of PDAC, we used pancreatitis-driven pancreatic cancer initiation models in vivo and pancreatic acinar cell 3-dimensional culture in vitro. Results: Wnt/β-catenin signaling pathway-related molecules were overexpressed in PDAC tissues/cells and correlated with poor prognosis in PDAC patients. In addition, hyperglycemia exacerbated the abnormal activation of β-catenin in PDAC and enhanced the malignant biological behaviors of PCs in a Wnt/β-catenin signaling pathway-dependent manner. Indeed, hyperglycemia accelerated the formation of pancreatic precancerous lesions by activating the Wnt/β-catenin signaling pathway in vivo and in vitro. Conclusion: Hyperglycemia promotes pancreatic cancer initiation and progression by activating the Wnt/β-catenin signaling pathway.


2018 ◽  
Vol 17 (4) ◽  
pp. 1016-1019 ◽  
Author(s):  
Chao Qu ◽  
Qing Wang ◽  
Zhiqiang Meng ◽  
Peng Wang

Pancreatic ductal adenocarcinoma is characterized by an extensive stromal response called desmoplasia. Within the tumor stroma, cancer-associated fibroblasts (CAFs) are the primary cell type. CAFs have been shown to play a role in pancreatic cancer progression; they secrete growth factors, inflammatory cytokines, and chemokines that stimulate signaling pathways in cancer cells and modulate the cancer biology toward increased aggressiveness. Therefore, targeting CAFs may serve as a powerful weapon against pancreatic cancer and improve therapeutic effects. However, a previous study aiming to deplete CAFs by inhibiting sonic Hedgehog signaling failed to show any benefit in survival time of pancreatic cancer patients. We reported that the natural product curcumin reeducated CAFs in pancreatic cancer treatment. A low concentration of curcumin reversed the activation of fibroblasts without exhibiting growth suppression effects. In addition, curcumin suppressed CAF-induced pancreatic cancer cell migration and invasion in vitro and lung metastasis in vivo. The results of our study suggest that active CAFs can be inactivated by certain natural products such as curcumin. Reeducation of CAFs back to their normal state, rather than their indiscriminate depletion, may broaden our view in the development of therapeutic options for the treatment of pancreatic cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yangbing Jin ◽  
Zehui Zhang ◽  
Siyi Zou ◽  
Fanlu Li ◽  
Hao Chen ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-associated death in the United States and has a 5-year survival rate of <4%. Although much effort has been invested in the research and development of pancreatic cancer drugs over the past 30 years, due to the lack of effective targetable carcinogenic drivers, no new targeted therapies that can improve patient prognosis have been approved for clinical use. SHR-A1403 is a new c-mesenchymal-epithelial transition factor (c-MET) antibody-drug conjugate that can be used for the targeted treatment of PDAC with high c-MET expression. This study reports for the first time the application prospects of SHR-A1403 in preclinical models of PDAC. SHR-A1403 significantly inhibited the proliferation, migration, and invasion of pancreatic cancer cells and induced cell cycle arrest and apoptosis. These changes were caused by inhibition of intracellular cholesterol biosynthesis by SHR-A1403. Therefore, targeting c-MET through SHR-A1403 showed strong preclinical anti-tumour efficacy in pancreatic cancer. Our work suggests the potential application of c-MET-targeted antibody-drug conjugate treatment for PDAC in clinical practise.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1101 ◽  
Author(s):  
Asfar S. Azmi ◽  
Yiwei Li ◽  
Amro Aboukameel ◽  
Irfana Muqbil ◽  
Philip A. Philip ◽  
...  

Pancreatic ductal adenocarcinoma is one of the most aggressive cancers, with high mortality in the United States. One of the important signal transduction proteins involved in the regulation of pancreatic cancer’s aggressive progression is the nuclear export protein (XPO1). High expression of XPO1 has been found in pancreatic, lung, breast and other cancers and lymphomas with a poor prognosis of patients with tumors and high proliferative activity of cancer cells. Because XPO1 exports multiple tumor suppressor proteins simultaneously from the nucleus, the inhibition of XPO1 may retain multiple tumor suppressors in the nucleus, resulting in the suppression of cell proliferation and the induction of apoptosis in tumors. In this study, we found that the high expression of XPO1 in pancreatic cancer cells could be, in part, due to the methylation of the miR-30 gene, leading to the low expression level of the miR-30 family. By co-transfection of the XPO1 3′-UTR-Luc target vector with miR-30 mimic, we found that XPO1 is a direct target of the miR-30 family. We also observed that the enforced expression of the miR-30 family inhibited the expression of XPO1, resulting in the suppression of pancreatic cancer growth both in vitro and in vivo. These findings could help to design a novel therapeutic strategy for the treatment of pancreatic cancer by introducing miR-30 into cancer cells.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1881 ◽  
Author(s):  
Yang Zhou ◽  
Yunjiang Zhou ◽  
Keke Wang ◽  
Tao Li ◽  
Minda Zhang ◽  
...  

Resistance to chemotherapy is a major clinical challenge in the treatment of pancreatic ductal adenocarcinoma (PDAC). Here, we provide evidence that Rho associated coiled-coil containing protein kinase 2 (ROCK2) maintains gemcitabine resistance in gemcitabine resistant pancreatic cancer cells (GR cells). Pharmacological inhibition or gene silencing of ROCK2 markedly sensitized GR cells to gemcitabine by suppressing the expression of zinc-finger-enhancer binding protein 1 (ZEB1). Mechanically, ROCK2-induced sp1 phosphorylation at Thr-453 enhanced the ability of sp1 binding to ZEB1 promoter regions in a p38-dependent manner. Moreover, transcriptional activation of ZEB1 facilitated GR cells to repair gemcitabine-mediated DNA damage via ATM/p-CHK1 signaling pathway. Our findings demonstrate the essential role of ROCK2 in EMT-induced gemcitabine resistance in pancreatic cancer cells and provide strong evidence for the clinical application of fasudil, a ROCK2 inhibitor, in gemcitabine-refractory PDAC.


2021 ◽  
Vol 22 (14) ◽  
pp. 7444
Author(s):  
Kenta Kachi ◽  
Hiroyuki Kato ◽  
Aya Naiki-Ito ◽  
Masayuki Komura ◽  
Aya Nagano-Matsuo ◽  
...  

Pancreatic cancer is a fatal disease, and thus its chemoprevention is an important issue. Based on the recent report that patients with allergic diseases have a low risk for pancreatic cancer, we examined the potential chemopreventive effect of anti-allergic agents using a hamster pancreatic carcinogenesis model. Among the three anti-allergic drugs administered, montelukast showed a tendency to suppress the incidence of pancreatic cancer. Further animal study revealed a significantly decreased incidence of pancreatic cancer in the high-dose montelukast group compared with controls. The development of the pancreatic intraepithelial neoplasia lesions was also significantly suppressed. The Ki-67 labeling index was significantly lower in pancreatic carcinomas in the high-dose montelukast group than in controls. In vitro experiments revealed that montelukast suppressed proliferation of pancreatic cancer cells in a dose-dependent manner with decreased expression of phospho-ERK1/2. Montelukast induced G1 phase arrest. Conversely, leukotriene D4 (LTD4), an agonist of CYSLTR1, increased cellular proliferation of pancreatic cancer cells with an accumulation of phospho-ERK1/2. In our cohort, pancreatic ductal adenocarcinoma patients with high CYSLTR1 expression showed a significantly unfavorable clinical outcome compared with those with low expression. Our results indicate that montelukast exerts a chemopreventive effect on pancreatic cancer via the LTD4–CYSLTR1 axis and has potential for treatment of pancreatic carcinogenesis.


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4295
Author(s):  
Joelle Mesmar ◽  
Manal M. Fardoun ◽  
Rola Abdallah ◽  
Yusra Al Dhaheri ◽  
Hadi M. Yassine ◽  
...  

Pancreatic cancer (PC) is the fourth leading cause of all cancer-related deaths. Despite major improvements in treating PC, low survival rate remains a major challenge, indicating the need for alternative approaches, including herbal medicine. Among medicinal plants is Ziziphus nummularia (family Rhamnaceae), which is a thorny shrub rich in bioactive molecules. Leaves of Ziziphus nummularia have been used to treat many pathological conditions, including cancer. However, their effects on human PC are still unknown. Here, we show that the treatment of human pancreatic ductal adenocarcinoma cells (Capan-2) with Ziziphus nummularia ethanolic extract (ZNE) (100–300 μg/mL) attenuated cell proliferation in a time- and concentration-dependent manner. Pretreatment with N-acetylcysteine, an ROS scavenger, attenuated the anti-proliferative effect of ZNE. In addition, ZNE significantly decreased the migratory and invasive capacity of Capan-2 with a concomitant downregulation of integrin α2 and increased cell–cell aggregation. In addition, ZNE inhibited in ovo angiogenesis as well as reduced VEGF and nitric oxide levels. Furthermore, ZNE downregulated the ERK1/2 and NF-κB signaling pathways, which are known to drive tumorigenic and metastatic events. Taken together, our results suggest that ZNE can attenuate the malignant phenotype of Capan-2 by inhibiting hallmarks of PC. Our data also provide evidence for the potential anticancer effect of Ziziphus nummularia, which may represent a new resource of novel anticancer compounds, especially ones that can be utilized for the management of PC.


2020 ◽  
Vol 401 (10) ◽  
pp. 1153-1165 ◽  
Author(s):  
Antônio F. da Silva Filho ◽  
Lucas B. Tavares ◽  
Maira G. R. Pitta ◽  
Eduardo I. C. Beltrão ◽  
Moacyr J. B. M. Rêgo

AbstractPancreatic ductal adenocarcinoma is one of the most aggressive tumors with a microenvironment marked by hypoxia and starvation. Galectin-3 has been evaluated in solid tumors and seems to present both pro/anti-tumor effects. So, this study aims to characterize the expression of Galectin-3 from pancreatic tumor cells and analyze its influence for cell survive and motility in mimetic microenvironment. For this, cell cycle and cell death were accessed through flow cytometry. Characterization of inside and outside Galectin-3 was performed through Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), immunofluorescence, Western blot, and ELISA. Consequences of Galectin-3 extracellular inhibition were investigated using cell death and scratch assays. PANC-1 showed increased Galectin-3 mRNA expression when cultivated in hypoxia for 24 and 48 h. After 24 h in simultaneously hypoxic/deprived incubation, PANC-1 shows increased Galectin-3 protein and secreted levels. For Mia PaCa-2, cultivation in deprivation was determinant for the increasing in Galectin-3 mRNA expression. When cultivated in simultaneously hypoxic/deprived condition, Mia PaCa-2 also presented increasing for the Galectin-3 secreted levels. Treatment of PANC-1 cells with lactose increased the death rate when cells were incubated simultaneously hypoxic/deprived condition. Therefore, it is possible to conclude that the microenvironmental conditions modulate the Galectin-3 expression on the transcriptional and translational levels for pancreatic cancer cells.


Sign in / Sign up

Export Citation Format

Share Document