scholarly journals High Efficiency Recombinant Protein Purification Using mCherry and YFP Nanobody Affinity Matrices

2021 ◽  
Author(s):  
Anh T.Q. Cong ◽  
Taylor L. Witter ◽  
Matthew J. Schellenberg

Mammalian cell lines are important expression systems for large proteins and protein complexes, particularly when the acquisition of post-translational modifications in the proteins native environment is desired. However, low or variable transfection efficiencies are challenges that must be overcome to use such an expression system. Expression of recombinant proteins as a fluorescent protein fusion enables real-time monitoring of protein expression, and also provides an affinity handle for one-step protein purification using a suitable affinity reagent. Here we describe a panel of anti-GFP and anti-mCherry nanobody affinity matrices and their efficacy for purification of GFP/YFP or mCherry fusion proteins. We define the molecular basis by which they bind their target protein using X-ray crystallography. From these analyses we define an optimal pair of nanobodies for purification of recombinant protein tagged with GFP/YFP or mCherry, and demonstrate these nanobody-sepharose supports are stable to many rounds of cleaning and extended incubation in denaturing conditions. Finally, we demonstrate the utility of the mCherry-tag system by using it to purify recombinant human Topoisomerase 2α expressed in HEK293F cells. The mCherry-tag and GFP/YFP-tag expression systems can be utilized for recombinant protein expression individually or in tandem for mammalian protein expression systems where real-time monitoring of protein expression levels and a high-efficiency purification step is needed.

1998 ◽  
Vol 36 (12) ◽  
pp. 3509-3513 ◽  
Author(s):  
Fabienne B. Bouche ◽  
Nicolaas H. C. Brons ◽  
Sophie Houard ◽  
Francois Schneider ◽  
Claude P. Muller

Recombinant hemagglutinin (H) of the measles virus (MV) expressed in a mammalian high-expression system based on the Semliki Forest virus replicon was used in an enzyme-linked immunosorbent assay (ELISA) for the detection of specific immunoglobulin M (IgM) and IgG in patients with acute-phase measles. One hundred twelve serum specimens from 70 patients with measles were analyzed. Case definition was based on a commercial IgM ELISA that utilizes MV-infected cells (MV-ELISA) (Enzygnost; Behring Diagnostics); the clinical criteria of the Centers for Disease Control and Prevention (Atlanta, Ga.); and/or the increase in hemagglutinin test titers, neutralization test titers, and levels of MV-specific IgG whenever paired sera were available. The initial time courses of the IgM signal after the onset of rash are similar in the H- and MV-ELISAs. On days 0 to 19, both ELISAs detected IgM in 67 of 68 (98.5%) sera. Average maximal levels of IgM seem to persist, however, about 10 days longer in the MV-ELISA (up to day 25) than in the H-ELISA (day 15). From days 20 to 29 and 30 to 59, the H-ELISA detected only 64.3 (9 of 14) and 19.2% (5 of 26), respectively, of sera that were IgM positive by MV-ELISA. At least up to day 30, the performance of the H-ELISA seemed to be similar to that reported for commercial ELISAs based on whole MV. Our results demonstrate that MV H-specific IgM can be used to diagnose most measles cases from a single serum specimen collected within 19 days after the onset of rash and that the recombinant protein used in this study is suitable for this purpose.


2020 ◽  
Vol 500 (1) ◽  
pp. 388-396
Author(s):  
Tian Z Hu ◽  
Yong Zhang ◽  
Xiang Q Cui ◽  
Qing Y Zhang ◽  
Ye P Li ◽  
...  

ABSTRACT In astronomy, the demand for high-resolution imaging and high-efficiency observation requires telescopes that are maintained at peak performance. To improve telescope performance, it is useful to conduct real-time monitoring of the telescope status and detailed recordings of the operational data of the telescope. In this paper, we provide a method based on machine learning to monitor the telescope performance in real-time. First, we use picture features and the random forest algorithm to select normal pictures captured by the acquisition camera or science camera. Next, we cut out the source image of the picture and use convolutional neural networks to recognize star shapes. Finally, we monitor the telescope performance based on the relationship between the source image shape and telescope performance. Through this method, we achieve high-performance real-time monitoring with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope, including guiding system performance, focal surface defocus, submirror performance, and active optics system performance. The ultimate performance detection accuracy can reach up to 96.7 per cent.


2020 ◽  
Vol 11 (18) ◽  
pp. 4791-4800 ◽  
Author(s):  
Zhixue Liu ◽  
Weilei Zhou ◽  
Jingjing Li ◽  
Haoyang Zhang ◽  
Xianyin Dai ◽  
...  

A unique fluorescent supramolecular assembly was constructed from coumarin-modified β-cyclodextrin and an adamantane-modified cyclic arginine–glycine–aspartate peptide for high-efficiency real-time monitoring of biothiols in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document