scholarly journals Traditional martial arts and shooting training have different effects on auditory fine structure processing ability---Evidence from behavioral tests and fMRI

2021 ◽  
Author(s):  
Yu Ding ◽  
Keying Zhang ◽  
Chunmei Cao

Explore the influence of traditional martial arts and shooting training on the ability of auditory temporal fine structure (TFS) processing. Twenty-five college students participated in the experiment, including 8 traditional martial arts practitioners, 8 high-level shooting athletes, and 9 control groups without any regular exercise habits. The BIC (break in interaural correlation) delay threshold and TFS1 test were used to evaluate the temporary storage capacity and sensitivity of TFS, respectively, and a fMRI test was performed after the test. The results found that the traditional martial arts group had stronger TFS sensitivity, while the shooting group had stronger TFS retention ability, and the performance of the behavioral test of the shooting group is related to the fALFF value of the brain area of interest. Traditional martial arts and shooting training have improved the ability of auditory information processing from different angles, diversified exercise habits will lead to the development of diversity in brain structure and function.

2020 ◽  
Vol 21 (9) ◽  
pp. 3316 ◽  
Author(s):  
Cristina V. Dieni ◽  
Samuele Contemori ◽  
Andrea Biscarini ◽  
Roberto Panichi

The estrogen estradiol is a potent neuroactive steroid that may regulate brain structure and function. Although the effects of estradiol have been historically associated with gonadal secretion, the discovery that this steroid may be synthesized within the brain has expanded this traditional concept. Indeed, it is accepted that de novo synthesized estradiol in the nervous system (nE2) may modulate several aspects of neuronal physiology, including synaptic transmission and plasticity, thereby influencing a variety of behaviors. These modulations may be on a time scale of minutes via non-classical and often membrane-initiated mechanisms or hours and days by classical actions on gene transcription. Besides the high level, recent investigations in the cerebellum indicate that even a low aromatase expression can be related to the fast nE2 effect on brain functioning. These pieces of evidence point to the importance of an on-demand and localized nE2 synthesis to rapidly contribute to regulating the synaptic transmission. This review is geared at exploring a new scenario for the impact of estradiol on brain processes as it emerges from the nE2 action on cerebellar neurotransmission and cerebellum-dependent learning.


2021 ◽  
pp. 1-9
Author(s):  
Neal R. Swerdlow ◽  
Savita G. Bhakta ◽  
Jo Talledo ◽  
Lindsay Benster ◽  
Juliana Kotz ◽  
...  

Abstract Background Auditory frequency modulation learning (‘auditory learning’) is a key component of targeted cognitive training (TCT) for schizophrenia. TCT can be effective in enhancing neurocognition and function in schizophrenia, but such gains require significant time and effort and elude many patients. Methods As a strategy to increase and/or accelerate TCT-induced clinical gains, we tested the dose- and time-course effects of the pro-attentional drug, amphetamine (AMPH; placebo, 2.5, 5 or 10 mg po; within-subject double-blind, order balanced) on auditory learning in schizophrenia patients [n = 32; M:F = 19:13; age 42.0 years (24–55)]. To understand predictors and/or mechanisms of AMPH-enhanced TCT, we also measured auditory fidelity (words-in-noise (WIN), quick speech-in-noise (QuickSIN)) and neurocognition (MATRICS comprehensive cognitive battery (MCCB)). Some measures were also acquired from age-matched healthy subjects (drug free; n = 10; M:F = 5:5). Results Patients exhibited expected deficits in neurocognition. WIN and QuickSIN performance at low signal intensities was impaired in patients with low v. high MCCB attention/vigilance (A/V) scores; these deficits were corrected by AMPH, maximally at 2.5–5 mg (d's = 0.79–1.29). AMPH also enhanced auditory learning, with maximal effects at 5 mg (d = 0.93), and comparable effects 60 and 210 min post pill. ‘Pro-learning’ effects of AMPH and AMPH-induced gains in auditory fidelity were most evident in patients with low MCCB A/V scores. Conclusions These findings advance our understanding of the impact of pro-attentional interventions on auditory information processing and suggest dose- and time-course parameters for studies that assess the ability of AMPH to enhance the clinical benefits of TCT in schizophrenia patients.


2019 ◽  
Author(s):  
Elisabeth A. Wilde ◽  
Emily L. Dennis ◽  
David F Tate

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium brings together researchers from around the world to try to identify the genetic underpinnings of brain structure and function, along with robust, generalizable effects of neurological and psychiatric disorders. The recently-formed ENIGMA Brain Injury working group includes 8 subgroups, based largely on injury mechanism and patient population. This introduction to the special issue summarizes the history, organization, and objectives of ENIGMA Brain Injury, and includes a discussion of strategies, challenges, opportunities and goals common across 6 of the subgroups under the umbrella of ENIGMA Brain Injury. The following articles in this special issue, including 6 articles from different subgroups, will detail the challenges and opportunities specific to each subgroup.


Author(s):  
Arun Kumar Karunanithi ◽  
Joseph Caroselli ◽  
Jason Christensen ◽  
Michell Espitia

Abstract Laser Assisted Device Alteration (LADA) or Soft Defect Localization (SDL) is commonly used to root cause device marginality due to functional or structural failures. At a high level, LADA involves setting the device under test (DUT) at its marginal state and using focused near infra-red laser beams to perturb sensitive circuitry [1]. Scanning the focused laser beam over the die can be a long and time-consuming process. In this paper, two LADA cases are presented, which involve a parametric measurement failure while running a dynamic ATE test. Using LADA technique, these two cases were root caused. These two cases also explain how a parametric measurement-based LADA can be setup on ATE, as well as a synchronization method independent of vectors in a pattern. Synchronization was necessitated in the 2nd case due to the asymmetric test program loop, as well as the long test program cycle time. There are many factors which impact LADA turnaround time and it can take anywhere between few seconds to one day. The two major factors are the size of the Area of Interest (AOI) and test program cycle time. Test program cycle time influences the laser “dwell time” for LADA. Dwell time, in simple terms, is the total time the laser is parked at each pixel. The laser can also be synchronized with the test program cycle, keeping the two always in phase. This is explained in Case 2, where LADA synchronization was implemented, and the analysis was successfully completed in time, even though the test cycle time was very long.


2021 ◽  
Vol 22 (9) ◽  
pp. 4961
Author(s):  
Maria Kovalska ◽  
Eva Baranovicova ◽  
Dagmar Kalenska ◽  
Anna Tomascova ◽  
Marian Adamkov ◽  
...  

L-methionine, an essential amino acid, plays a critical role in cell physiology. High intake and/or dysregulation in methionine (Met) metabolism results in accumulation of its intermediate(s) or breakdown products in plasma, including homocysteine (Hcy). High level of Hcy in plasma, hyperhomocysteinemia (hHcy), is considered to be an independent risk factor for cerebrovascular diseases, stroke and dementias. To evoke a mild hHcy in adult male Wistar rats we used an enriched Met diet at a dose of 2 g/kg of animal weight/day in duration of 4 weeks. The study contributes to the exploration of the impact of Met enriched diet inducing mild hHcy on nervous tissue by detecting the histo-morphological, metabolomic and behavioural alterations. We found an altered plasma metabolomic profile, modified spatial and learning memory acquisition as well as remarkable histo-morphological changes such as a decrease in neurons’ vitality, alterations in the morphology of neurons in the selective vulnerable hippocampal CA 1 area of animals treated with Met enriched diet. Results of these approaches suggest that the mild hHcy alters plasma metabolome and behavioural and histo-morphological patterns in rats, likely due to the potential Met induced changes in “methylation index” of hippocampal brain area, which eventually aggravates the noxious effect of high methionine intake.


2020 ◽  
Vol 9 (2) ◽  
pp. 169-198
Author(s):  
Chen Chen ◽  
Feng-hsi Liu

Abstract A major claim in the constructionist approach to language acquisition is that grammar is learned by pairings of form and function. In this study we test this claim by examining how L2 learners of Mandarin Chinese acquire the bei passive construction, a construction that is associated with the meaning of adversity. Our goal is to find out whether L2 learners make the association between the passive and adversity. Participants performed a sentence choice task under four conditions: an adversative context with an adversative verb, an adversative context with a neutral verb, a neutral context with a neutral verb and a positive context with a neutral verb. In each context participants were asked to select either the bei passive construction or its active counterpart. We found that high-level learners consistently chose the bei passive significantly more in adversative contexts than in non-adversative contexts regardless of the connotations of the verbs, while low-level learners made the distinction half of the time. In addition, while low-level learners did not yet associate adversity with the form of the construction, high-level learners did. We conclude that L2 learners do learn the bei passive construction as a form-meaning pair. The constructionist approach is supported.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Peng Chen ◽  
Hongyang Jing ◽  
Mingtao Xiong ◽  
Qian Zhang ◽  
Dong Lin ◽  
...  

AbstractThe genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.


2017 ◽  
Vol 49 (5S) ◽  
pp. 824 ◽  
Author(s):  
X. r. Tan ◽  
Ivan C. C. Low ◽  
Mary C. Stephenson ◽  
T. Kok ◽  
Heinrich W. Nolte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document