scholarly journals Iron treatment induces defense responses and disease resistance against Magnaporthe oryzae in rice

2021 ◽  
Author(s):  
Ferran Sanchez-Sanuy ◽  
Roberto Mateluna Cuadra ◽  
Kazunori Okada ◽  
Gian Attilio Sacchi ◽  
Sonia Campo ◽  
...  

Background: Iron is an essential micronutrient required for plant growth and development. The impact of iron in plant-pathogen interactions is also well recognized. However, the molecular basis underlying the effect of plant iron status and immune function in plants is poorly understood. Here, we investigated the impact of treatment with high iron in rice immunity at the cellular and molecular level. Results: We show that treatment with high iron confers resistance to infection by the blast fungus M. oryzae in rice. Histochemical staining of M. oryzae-infected leaves revealed that iron and Reactive Oxygen Species (ROS) accumulate at high levels in cells in the vicinity of the infection site. During pathogen infection, a stronger induction of defense-related genes occurs in leaves of iron-treated plants. Notably, a superinduction of phytoalexin biosynthetic genes, both diterpene phytoalexins and sakuranetin, is observed in iron-treated plants during pathogen infection. As a consequence, phytoalexin accumulation was higher in iron-treated plants compared with control plants. Transcriptional alterations of iron homeostasis-related genes and a reduction in apoplastic iron content were observed in leaves of Fe-treated rice plants. Conclusions: These results illustrate that the iron status plays a key role in the response of rice plants to pathogen infection, while reinforcing the notion that iron signaling and defense signaling must operate in a coordinated manner in controlling disease resistance in plants. This information provides a basis to better understand the molecular mechanisms involved in rice immunity.

2020 ◽  
Vol 21 (15) ◽  
pp. 5514
Author(s):  
Xiaoyu Wang ◽  
Lingyao Kong ◽  
Pengfei Zhi ◽  
Cheng Chang

The aerial surface of higher plants is covered by a hydrophobic layer of cuticular waxes to protect plant tissues against enormous environmental challenges including the infection of various pathogens. As the first contact site between plants and pathogens, the layer of cuticular waxes could function as a plant physical barrier that limits the entry of pathogens, acts as a reservoir of signals to trigger plant defense responses, and even gives cues exploited by pathogens to initiate their infection processes. Past decades have seen unprecedented proceedings in understanding the molecular mechanisms underlying the biosynthesis of plant cuticular waxes and their functions regulating plant–pathogen interactions. In this review, we summarized the recent progress in the molecular biology of cuticular wax biosynthesis and highlighted its multiple roles in plant disease resistance against bacterial, fungal, and insect pathogens.


2019 ◽  
Vol 20 (13) ◽  
pp. 3243 ◽  
Author(s):  
Yue Zhang ◽  
Qunen Liu ◽  
Yingxin Zhang ◽  
Yuyu Chen ◽  
Ning Yu ◽  
...  

Lesion mimic mutants are excellent models for research on molecular mechanisms of cell death and defense responses in rice. We identified a new rice lesion mimic mutant lmm24 from a mutant pool of indica rice cultivar “ZhongHui8015”. The LMM24 gene was identified by MutMap, and LMM24 was confirmed as a receptor-like cytoplasmic kinase 109 by amino acid sequence analysis. The lmm24 mutant displayed dark brown lesions in leaves and growth retardation that were not observed in wild-type ZH8015. The results of histochemical staining and TUNEL assays showed enhanced ROS accumulation and cell death in lmm24. Chloroplast degradation was observed in lmm24 leaves, with decreased expression of photosynthesis-related genes and increased expression of the senescence-induced STAYGREEN (SGR) gene and other senescence-associated genes. Furthermore, lmm24 exhibited enhanced resistance to rice blast fungus Magnaporthe oryzae (M. oryzae) and up-regulation of defense response genes. Our data demonstrate that LMM24 regulates cell death and defense responses in rice.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Korry J. Hintze ◽  
James P. McClung

Iron status affects cognitive and physical performance in humans. Recent evidence indicates that iron balance is a tightly regulated process affected by a series of factors other than diet, to include hypoxia. Hypoxia has profound effects on iron absorption and results in increased iron acquisition and erythropoiesis when humans move from sea level to altitude. The effects of hypoxia on iron balance have been attributed to hepcidin, a central regulator of iron homeostasis. This paper will focus on the molecular mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF)/hypoxia response element (HRE) system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may affect hepcidin signaling and organismal iron metabolism.


2012 ◽  
Author(s):  
Guido Sessa ◽  
Gregory B. Martin

The research problem: The detection of pathogen-associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs) is a key mechanism by which plants activate an effective immune response against pathogen attack. MAPK cascades are important signaling components downstream of PRRs that transduce the PAMP signal to activate various defense responses. Preliminary experiments suggested that the receptor-like cytoplasmickinase (RLCK) Mai5 plays a positive role in pattern-triggered immunity (PTI) and interacts with the MAPKKK M3Kε. We thus hypothesized that Mai5, as other RLCKs, functions as a component PRR complexes and acts as a molecular link between PAMP perception and activation of MAPK cascades. Original goals: The central goal of this research was to investigate the molecular mechanisms by which Mai5 and M3Kε regulate plant immunity. Specific objectives were to: 1. Determine the spectrum of PAMPs whose perception is transmitted by M3Kε; 2. Identify plant proteins that act downstream of M3Kε to mediate PTI; 3. Investigate how and where Mai5 interacts with M3Kε in the plant cell; 4. Examine the mechanism by which Mai5 contributes to PTI. Changes in research directions: We did not find convincing evidence for the involvement of M3Kε in PTI signaling and substituted objectives 1 and 3 with research activities aimed at the analysis of transcriptomic profiles of tomato plants during the onset of plant immunity, isolation of the novel tomato PRR FLS3, and investigation of the involvement of the RLCKBSKs in PTI. Main achievements during this research program are in the following major areas: 1. Functional characterization of Mai5. The function of Mai5 in PTI signaling was demonstrated by testing the effect of silencing the Mai5 gene by virus-induced gene silencing (VIGS) experiments and in cell death assays. Domains of Mai5 that interact with MAPKKKs and subcellular localization of Mai5 were analyzed in detail. 2. Analysis of transcriptional profiles during the tomato immune responses to Pseudomonas syringae (Pombo et al., 2014). We identified tomato genes whose expression is induced specifically in PTI or in effector-triggered immunity (ETI). Thirty ETI-specific genes were examined by VIGS for their involvement in immunity and the MAPKKK EPK1, was found to be required for ETI. 3. Dissection of MAP kinase cascades downstream of M3Kε (Oh et al., 2013; Teper et al., 2015). We identified genes that encode positive (SGT and EDS1) and negative (WRKY1 and WRKY2) regulators of the ETI-associated cell death mediated by M3Kε. In addition, the MKK2 MAPKK, which acts downstream of M3Kε, was found to interact with the MPK3 MAPK and specific MPK3 amino acids involved interaction were identified and found to be required for induction of cell death. We also identified 5 type III effectors of the bacterial pathogen Xanthomonaseuvesicatoria that inhibited cell death induced by components of ETI-associated MAP kinase cascades. 4. Isolation of the tomato PRR FLS3 (Hind et al., submitted). FLS3, a novel PRR of the LRR-RLK family that specifically recognizes the flagellinepitope flgII-28 was isolated. FLS3 was shown to bind flgII-28, to require kinase activity for function, to act in concert with BAK1, and to enhance disease resistance to Pseudomonas syringae. 5. Functional analysis of RLCKs of the brassinosteroid signaling kinase (BSK) family.Arabidopsis and tomato BSKs were found to interact with PRRs. In addition, certain ArabidospsisBSK mutants were found to be impaired in PAMP-induced resistance to Pseudomonas syringae. Scientific and agricultural significance: Our research activities discovered and characterized new molecular components of signaling pathways mediating recognition of invading pathogens and activation of immune responses against them. Increased understanding of molecular mechanisms of immunity will allow them to be manipulated by both molecular breeding and genetic engineering to produce plants with enhanced natural defense against disease.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Abinaya Manivannan ◽  
Jin-Hee Kim ◽  
Eun-Young Yang ◽  
Yul-Kyun Ahn ◽  
Eun-Su Lee ◽  
...  

Pepper is an economically important horticultural plant that has been widely used for its pungency and spicy taste in worldwide cuisines. Therefore, the domestication of pepper has been carried out since antiquity. Owing to meet the growing demand for pepper with high quality, organoleptic property, nutraceutical contents, and disease tolerance, genomics assisted breeding techniques can be incorporated to develop novel pepper varieties with desired traits. The application of next-generation sequencing (NGS) approaches has reformed the plant breeding technology especially in the area of molecular marker assisted breeding. The availability of genomic information aids in the deeper understanding of several molecular mechanisms behind the vital physiological processes. In addition, the NGS methods facilitate the genome-wide discovery of DNA based markers linked to key genes involved in important biological phenomenon. Among the molecular markers, single nucleotide polymorphism (SNP) indulges various benefits in comparison with other existing DNA based markers. The present review concentrates on the impact of NGS approaches in the discovery of useful SNP markers associated with pungency and disease resistance in pepper. The information provided in the current endeavor can be utilized for the betterment of pepper breeding in future.


2019 ◽  
Vol 20 (13) ◽  
pp. 3283 ◽  
Author(s):  
Shu-Wing Ng ◽  
Sam G. Norwitz ◽  
Errol R. Norwitz

Iron is an essential element for the survival of most organisms, including humans. Demand for iron increases significantly during pregnancy to support growth and development of the fetus. Paradoxically, epidemiologic studies have shown that excessive iron intake and/or high iron status can be detrimental to pregnancy and is associated with reproductive disorders ranging from endometriosis to preeclampsia. Reproductive complications resulting from iron deficiency have been reviewed elsewhere. Here, we focus on reproductive disorders associated with iron overload and the contribution of ferroptosis—programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes—using preeclampsia as a model system. We propose that the clinical expressions of many reproductive disorders and pregnancy complications may be due to an underlying ferroptopathy (elemental iron-associated disease), characterized by a dysregulation in iron homeostasis leading to excessive ferroptosis.


2009 ◽  
Vol 22 (7) ◽  
pp. 820-829 ◽  
Author(s):  
Chang-Jie Jiang ◽  
Masaki Shimono ◽  
Satoru Maeda ◽  
Haruhiko Inoue ◽  
Masaki Mori ◽  
...  

Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (≥2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Ferran Sánchez-Sanuy ◽  
Cristina Peris-Peris ◽  
Shiho Tomiyama ◽  
Kazunori Okada ◽  
Yue-Ie Hsing ◽  
...  

Abstract Background MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level in eukaryotes. In rice, MIR7695 expression is regulated by infection with the rice blast fungus Magnaporthe oryzae with subsequent down-regulation of an alternatively spliced transcript of natural resistance-associated macrophage protein 6 (OsNramp6). NRAMP6 functions as an iron transporter in rice. Results Rice plants grown under high iron supply showed blast resistance, which supports that iron is a factor in controlling blast resistance. During pathogen infection, iron accumulated in the vicinity of M. oryzae appressoria, the sites of pathogen entry, and in cells surrounding infected regions of the rice leaf. Activation-tagged MIR7695 rice plants (MIR7695-Ac) exhibited enhanced iron accumulation and resistance to M. oryzae infection. RNA-seq analysis revealed that blast resistance in MIR7695-Ac plants was associated with strong induction of defense-related genes, including pathogenesis-related and diterpenoid biosynthetic genes. Levels of phytoalexins during pathogen infection were higher in MIR7695-Ac than wild-type plants. Early phytoalexin biosynthetic genes, OsCPS2 and OsCPS4, were also highly upregulated in wild-type rice plants grown under high iron supply. Conclusions Our data support a positive role of miR7695 in regulating rice immunity that further underpin links between defense and iron signaling in rice. These findings provides a basis to better understand regulatory mechanisms involved in rice immunity in which miR7695 participates which has a great potential for the development of strategies to improve blast resistance in rice.


Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Fan Zhang ◽  
Dan Zeng ◽  
Liyu Huang ◽  
Yingyao Shi ◽  
Tengjun Chen ◽  
...  

Abstract Background Salt stress and bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) are key limiting factors of rice (Oryza sativa L.) yields. Members of sucrose non-fermenting 1 (SNF1)-related protein kinase 2 (SnRK2), which is a family of plant-specific Ser/Thr kinases, are important components of signaling pathways involved in plant developmental processes and responses to stresses. There are 10 members of the SnRK2 family in rice; however, their functions are poorly understood, as are the underlying molecular mechanisms. Results In this study, we found that OsSAPK9, which belongs to the SnRK2 family, positively regulated salt-stress tolerance and strain-specific resistance to bacterial blight in rice. RNA sequencing revealed that there were 404 and 1324 genes differentially expressed in OsSAPK9-RNAi in comparison with wild-type plants under salt-stress conditions and after Xoo inoculation, respectively, which participate in basic metabolic processes. In total, 65 common differentially expressed genes involved mainly in defense responses were detected both under salt-stress conditions and after Xoo inoculation. Moreover, in vivo and in vitro experiments demonstrated that OsSAPK9 forms a protein complex with the molecular chaperones OsSGT1 and OsHsp90, and transgenic plants overexpressing OsSGT1 exhibited decreased tolerances to salt stress and significantly increased resistance levels to bacterial blight. Thus, OsSAPK9 may function as a center node regulator of salt-stress responses and disease-resistance pathways through its interaction with OsSGT1 in rice. Conclusion This study confirms that OsSAPK9 functions as a positive regulator of salt-stress responses and disease resistance through its interaction with OsSGT1 in rice.


2021 ◽  
Vol 22 (21) ◽  
pp. 11939
Author(s):  
Ana Mata ◽  
Susana Cadenas

Nuclear factor erythroid-2 related factor 2 (Nrf2) is a transcription factor that controls cellular defense responses against toxic and oxidative stress by modulating the expression of genes involved in antioxidant response and drug detoxification. In addition to maintaining redox homeostasis, Nrf2 is also involved in various cellular processes including metabolism and inflammation. Nrf2 activity is tightly regulated at the transcriptional, post-transcriptional and post-translational levels, which allows cells to quickly respond to pathological stress. In the present review, we describe the molecular mechanisms underlying the transcriptional regulation of Nrf2. We also focus on the impact of Nrf2 in cardiac ischemia–reperfusion injury, a condition that stimulates the overproduction of reactive oxygen species. Finally, we analyze the protective effect of several natural and synthetic compounds that induce Nrf2 activation and protect against ischemia–reperfusion injury in the heart and other organs, and their potential clinical application.


Sign in / Sign up

Export Citation Format

Share Document