scholarly journals Interdependencies between cellular and humoral immune responses in heterologous and homologous SARS-CoV-2 vaccination

Author(s):  
Moritz M Hollstein ◽  
Lennart Muensterkoetter ◽  
Michael P Schoen ◽  
Armin Bergmann ◽  
Thea M Husar ◽  
...  

Background: Homologous and heterologous SARS-CoV-2-vaccinations yield different spike protein-directed humoral and cellular immune responses. However, their interdependencies remain elusive. Methods: COV-ADAPT is a prospective, observational cohort study of 417 healthcare workers who received homologous vaccination with Astra (ChAdOx1-S; AstraZeneca) or BNT (BNT162b2; Biontech/Pfizer) or heterologous vaccination with Astra/BNT. We assessed the humoral (anti-spike-RBD-IgG, neutralizing antibodies, antibody avidity) and cellular (spike-induced T cell interferon-y release) immune response in blood samples up to 2 weeks before (T1) and 2 to 12 weeks following secondary immunization (T2). Findings: Initial vaccination with Astra resulted in lower anti-spike-RBD-IgG responses compared to BNT (70+/-114 vs. 226+/-279 BAU/ml, p<0.01) at T1, whereas T cell activation did not differ significantly. Booster vaccination with BNT proved superior to Astra at T2 (anti-spike-RBD-IgG: Astra/BNT 2387+/-1627 and BNT/BNT 3202+/-2184 vs. Astra/Astra 413+/-461 BAU/ml, both p<0.001; spike-induced T cell interferon-y; release: Astra/BNT 5069+/-6733 and BNT/BNT 4880+/-7570 vs. Astra/Astra 1152+/-2243 mIU/ml, both p<0.001). No significant differences were detected between BNT-boostered groups at T2. For Astra, we observed no booster effect on T cell activation. We found associations between anti-spike-RBD-IgG levels (Astra/BNT and BNT/BNT) and T cell responses (Astra/Astra and Astra/BNT) from T1 to T2. There were also links between levels of anti-spike-RBD-IgG and T cell at both time points (all groups combined). All regimes yielded neutralizing antibodies and increased antibody avidity at T2. Interpretation: Interdependencies between humoral and cellular immune responses differ between common SARS-CoV-2 vaccination regimes. T cell activation is unlikely to compensate for poor humoral responses. Funding: Deutsche Forschungsgemeinschaft (DFG), ER723/3-1

Author(s):  
Luise Erpenbeck ◽  
Moritz M. Hollstein ◽  
Lennart Münsterkötter ◽  
Michael Schön ◽  
Armin Bergmann ◽  
...  

Background: Homologous and heterologous SARS-CoV-2 vaccinations yield different spike protein-directed humoral and cellular immune responses. This study aimed to explore their currently unknown interdependencies. Methods: COV-ADAPT is a prospective, observational cohort study of 417 healthcare workers who received vaccination with homologous ChAdOx1 nCoV-19, homologous BNT162b2 or with heterologous ChAdOx1 nCoV-19/BNT162b2. We assessed humoral (anti-spike-RBD-IgG, neutralizing antibodies, avidity) and cellular (spike-induced T cell interferon‑γ release) immune responses in blood samples up to 2 weeks before (T1) and 2 to 12 weeks following secondary immunization (T2). Results: Initial vaccination with ChAdOx1 nCoV-19 resulted in lower anti-spike-RBD-IgG compared to BNT162b2 (70±114 vs. 226±279 BAU/ml, p<0.01) at T1. Booster vaccination with BNT162b2 proved superior to ChAdOx1 nCoV-19 at T2 (anti-spike-RBD-IgG: ChAdOx1 nCoV-19/BNT162b2 2387±1627 and homologous BNT162b2 3202±2184 vs. homologous ChAdOx1 nCoV-19 413±461 BAU/ml, both p<0.001; spike-induced T cell interferon-γ release: ChAdOx1 nCoV-19/BNT162b2 5069±6733 and homologous BNT162b2 4880±7570 vs. homologous ChAdOx1 nCoV-19 1152±2243 mIU/ml, both p<0.001). No significant differences were detected between BNT162b2-boostered groups at T2. For ChAdOx1 nCoV-19, no booster effect on T cell activation could be observed. We found associations between anti-spike-RBD-IgG levels (ChAdOx1 nCoV-19/BNT162b2 and homologous BNT162b2) and T cell responses (homologous ChAdOx1 nCoV-19 and ChAdOx1 nCoV-19/BNT162b2) from T1 to T2. Additionally, anti-spike-RBD-IgG and T cell response were linked at both time points (all groups combined). All regimes yielded neutralizing antibodies and increased antibody avidity at T2. Conclusions: Interdependencies between humoral and cellular immune responses differ between common SARS-CoV-2 vaccination regimes. T cell activation is unlikely to compensate for poor humoral responses.


2021 ◽  
Vol 6 (59) ◽  
pp. eabj1750
Author(s):  
Daryl Geers ◽  
Marc C. Shamier ◽  
Susanne Bogers ◽  
Gerco den Hartog ◽  
Lennert Gommers ◽  
...  

The emergence of SARS-CoV-2 variants harboring mutations in the spike (S) protein has raised concern about potential immune escape. Here, we studied humoral and cellular immune responses to wild type SARS-CoV-2 and the B.1.1.7 and B.1.351 variants of concern in a cohort of 121 BNT162b2 mRNA-vaccinated health care workers (HCW). Twenty-three HCW recovered from mild COVID-19 disease and exhibited a recall response with high levels of SARS-CoV-2-specific functional antibodies and virus-specific T cells after a single vaccination. Specific immune responses were also detected in seronegative HCW after one vaccination, but a second dose was required to reach high levels of functional antibodies and cellular immune responses in all individuals. Vaccination-induced antibodies cross-neutralized the variants B.1.1.7 and B.1.351, but the neutralizing capacity and Fc-mediated functionality against B.1.351 was consistently 2- to 4-fold lower than to the homologous virus. In addition, peripheral blood mononuclear cells were stimulated with peptide pools spanning the mutated S regions of B.1.1.7 and B.1.351 to detect cross-reactivity of SARS-CoV-2-specific T cells with variants. Importantly, we observed no differences in CD4+ T-cell activation in response to variant antigens, indicating that the B.1.1.7 and B.1.351 S proteins do not escape T-cell-mediated immunity elicited by the wild type S protein. In conclusion, this study shows that some variants can partially escape humoral immunity induced by SARS-CoV-2 infection or BNT162b2 vaccination, but S-specific CD4+ T-cell activation is not affected by the mutations in the B.1.1.7 and B.1.351 variants.


2001 ◽  
Vol 75 (1) ◽  
pp. 269-277 ◽  
Author(s):  
Adelaida Sarukhan ◽  
Sabine Camugli ◽  
Bernard Gjata ◽  
Harald von Boehmer ◽  
Olivier Danos ◽  
...  

ABSTRACT Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4+ T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and to achieve safe and stable gene transfer in clinical trials.


Author(s):  
Neil Goldstein ◽  
Viki Bockstal ◽  
Stephan Bart ◽  
Kerstin Luhn ◽  
Cynthia Robinson ◽  
...  

Abstract Background This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. Methods Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. Results All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. Conclusions Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.


2021 ◽  
Author(s):  
Chanchan Xiao ◽  
Lipeng Mao ◽  
Zhigang Wang ◽  
Guodong Zhu ◽  
Lijuan Gao ◽  
...  

The rapid spreading of the newly emerged SARS-CoV-2 variant, B.1.1.7, highlighted the requirements to better understand adaptive immune responses to this virus. Since CD8+ T cell responses play an important role in disease resolution and modulation in COVID-19 patients, it is essential to address whether these newly emerged mutations would result in altered immune responses. Here we evaluated the immune properties of the HLA-A2 restricted CD8+ T cell epitopes containing mutations from B.1.1.7, and furthermore performed a comprehensive analysis of the SARS-CoV-2 specific CD8+ T cell responses from COVID-19 convalescent patients recognizing the ancestral Wuhan strain compared to B.1.1.7. First, most of the predicted CD8+ T cell epitopes showed proper binding with HLA-A2, while epitopes from B.1.1.7 had lower binding capability than those from the ancestral strain. In addition, these peptides could effectively induced the activation and cytotoxicity of CD8+ T cells. Our results further showed that at least two site mutations in B.1.1.7 resulted in a decrease in CD8+ T cell activation and a possible immune evasion, namely A1708D mutation in ORF1ab1707-1716 and I2230T mutation in ORF1ab2230-2238. Our current analysis provides information that contributes to the understanding of SARS-CoV-2-specific CD8+ T cell responses elicited by infection of mutated strains.


2021 ◽  
Author(s):  
Henry Bock ◽  
Thomas Juretzek ◽  
Robert Handreka ◽  
Johanna Ruhnau ◽  
Karl Reuner ◽  
...  

Abstract Background: Vaccination against SARS CoV-2 results in excellent personal protection against a severe course of COVID19. In persons with Multiple Sclerosis (PwMS) vaccination efficacy may be reduced by immunomodulatory medications. Objective: To assess the vaccination induced cellular and humoral immune response in PwMS receiving disease modifiying therapies. Methods: In a monocentric observational study on PwMS and patients with Neuromyelitis optica we quantified the cellular and humoral immune responses to SARS CoV-2. Results: PwMS receiving Glatirameracetate, Interferon-beta, Dimethylfumarate, Cladribine or Natalalizumab had intact humoral and cellular immune responses following vaccination against SARS CoV-2. B-cell depleting therapies reduced B-cell responses but did not affect T cell responses. S1P inhibitors strongly reduced humoral and cellular immune responses. There was a good agreement between the Interferon gamma release assay and the T-SPOT assay used to measure viral antigen induced T-cell responses. Conclusion: This study demonstrates that S1P inhibitors impair the cellular and humoral immune response in SARS CoV-2 vaccination, whereas patients receiving B-cell depleting therapies mount an intact cellular immune response. These data can support clinicians in counselling their PwMS and NMOSD patients during the COVID 19 pandemic.


2012 ◽  
Vol 51 (1) ◽  
pp. 12-13
Author(s):  
Henrike Veninga ◽  
Ellen Borg ◽  
Hakan Kalay ◽  
Yvette van Kooyk ◽  
Georg Kraal ◽  
...  

2009 ◽  
Vol 83 (13) ◽  
pp. 6508-6521 ◽  
Author(s):  
Nancy A. Wilson ◽  
Brandon F. Keele ◽  
Jason S. Reed ◽  
Shari M. Piaskowski ◽  
Caitlin E. MacNair ◽  
...  

ABSTRACT All human immunodeficiency virus (HIV) vaccine efficacy trials to date have ended in failure. Structural features of the Env glycoprotein and its enormous variability have frustrated efforts to induce broadly reactive neutralizing antibodies. To explore the extent to which vaccine-induced cellular immune responses, in the absence of neutralizing antibodies, can control replication of a heterologous, mucosal viral challenge, we vaccinated eight macaques with a DNA/Ad5 regimen expressing all of the proteins of SIVmac239 except Env. Vaccinees mounted high-frequency T-cell responses against 11 to 34 epitopes. We challenged the vaccinees and eight naïve animals with the heterologous biological isolate SIVsmE660, using a regimen intended to mimic typical HIV exposures resulting in infection. Viral loads in the vaccinees were significantly less at both the peak (1.9-log reduction; P < 0.03) and at the set point (2.6-log reduction; P < 0.006) than those in control naïve animals. Five of eight vaccinated macaques controlled acute peak viral replication to less than 80,000 viral RNA (vRNA) copy eq/ml and to less than 100 vRNA copy eq/ml in the chronic phase. Our results demonstrate that broad vaccine-induced cellular immune responses can effectively control replication of a pathogenic, heterologous AIDS virus, suggesting that T-cell-based vaccines may have greater potential than previously appreciated.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A352-A352
Author(s):  
Pedro Noronha ◽  
Georgia Paraschoudi ◽  
Eric Sousa ◽  
Jéssica Kamiki ◽  
Patrícia António ◽  
...  

BackgroundSARS-CoV-2 primarily infects the upper and lower airway system, yet also endothelial cells and multiple tissues/organ systems. Anti-SARS-CoV-2 directed cellular immune responses may be deleterious or may confer immune protection – more research is needed in order to link epitope-specific T-cell responses with clinically relevant endpoints.1 Analysis of epitope reactivity in blood from healthy individuals showed pre-existing (CD4+) reactivity most likely due to previous exposure to the common old coronavirus species HCoV-OC43, HCoV-229E, - NL63 or HKU1, or – not mutually exclusive - cross-reactive T-cell responses that would recognize SARS-CoV-2, yet also other non-SARS-CoV-2 targets.2,3 Detailed single cell analysis in PBMCs from patients with COVID-19 showed strong T-cell activation and expansion of TCR gamma – delta T-cells in patients with fast recovery or mild clinical symptoms.4 Previous studies examining antigen-specific T-cell responses in tumor-infiltrating T-cells (TIL) showed that EBV or CMV-specific cellular immune responses in TIL from patients with melanoma or pancreatic cancer. Such virus -specific T-cells may represent ‘bystander’ T-cell activation, yet they may also impact on the quality and quantity of anti-tumor directed immune responses. We tested therefore TIL expanded from 5 patients with gastrointestinal cancer, who underwent elective tumor surgery during the COVID-19 pandemic for recognition of a comprehensive panel of SARS-CoV-2 T-cell epitopes and compared the reactivity, defined by IFN-gamma production to TIL reactivity in TIL harvested from patients in 2018, prior to the pandemic.MethodsA set of 187 individual T-cell epitopes were tested for TIL recognition using 100IU IL-2 and 100 IU IL-15. Different peptide epitopes were selected: i) all epitopes were not shared with the 4 common old coronavirus species, ii) some peptides were unique for SARS-CoV-2, and iii) others were shared with SARS-CoV-1. Antigen targets were either 15 mers or 9mers for MHC class II or class I epitopes, respectively, derived from the nucleocapsid, membrane, spike protein, ORF8 or the ORF3a. The amount of IFN-gamma production was reported as pg/10e4 cells/epitope/5 days. Controls included CMV and EBV peptides.ResultsWe detected strong IFN-gamma production directed against antigenic ‘hotspots’ including the ORF3a, epitopes from the SARS-CoV-2 nucleocapsid and spike protein with a range of 12 up to 30 targets being recognized/TIL.ConclusionsSARS-CoV-2 epitope recognition, defined by IFN production, can be readily detected in TIL from patients who underwent surgery during the pandemic, which is not the case for TIL harvested prior to the circulating SARS-CoV-2. This suggests a broader exposure of individuals to SARS-CoV-2 and shows that SARS-CoV-2 responses may shape the quality and quantity of anti-cancer directed cellular immune responses in patients with solid epithelial malignancies.AcknowledgementsWe thank the Surgery, Pathology and Vivarium Units of Champalimaud Clinical Center (N. Figueiredo, A. Brandl, A. Beltran, M. Castillo, C. Silva ).Ethics ApprovalThis study was approved by the Champalimaud Foundation Ethics Committee.ConsentAll donors provided written consent and the study was approved by the local ethics committee. The study is in compliance with the Declaration of Helsinki.ReferencesGrifoni, A., Weiskopf, D., Ramirez, S. I., Mateus, J., Dan, J. M., Moderbacher, C. R., Rawlings, S. A., Sutherland, A., Premkumar, L., Jadi, R. S., Marrama, D., de Silva, A. M., Frazier, A., Carlin, A. F., Greenbaum, J. A., Peters, B., Krammer, F., Smith, D. M., Crotty, S., & Sette, A. ( 2020). Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell, 181(7), 1489–1501.e15. https://doi.org/10.1016/j.cell.2020.05.015Mateus, J., Grifoni, A., Tarke, A., Sidney, J., Ramirez, S. I., Dan, J. M., Burger, Z. C., Rawlings, S. A., Smith, D. M., Phillips, E., Mallal, S., Lammers, M., Rubiro, P., Quiambao, L., Sutherland, A., Yu, E. D., da Silva Antunes, R., Greenbaum, J., Frazier, A., … Weiskopf, D. ( 2020). Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science, eabd3871. https://doi.org/10.1126/science.abd3871Le Bert, N., Tan, A. T., Kunasegaran, K., Tham, C. Y. L., Hafezi, M., Chia, A., Chng, M. H. Y., Lin, M., Tan, N., Linster, M., Chia, W. N., Chen, M. I.-C., Wang, L.-F., Ooi, E. E., Kalimuddin, S., Tambyah, P. A., Low, J. G.-H., Tan, Y.-J., & Bertoletti, A. ( 2020). SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature, 584(7821), 457–462. https://doi.org/10.1038/s41586-020-2550-zZhang, J., Wang, X., Xing, X. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat Immunol 2020;21:1107–1118. https://doi.org/10.1038/s41590-020-0762-x


2021 ◽  
Vol 9 (1) ◽  
pp. e001615
Author(s):  
Rachel A Woolaver ◽  
Xiaoguang Wang ◽  
Alexandra L Krinsky ◽  
Brittany C Waschke ◽  
Samantha M Y Chen ◽  
...  

BackgroundAntitumor immunity is highly heterogeneous between individuals; however, underlying mechanisms remain elusive, despite their potential to improve personalized cancer immunotherapy. Head and neck squamous cell carcinomas (HNSCCs) vary significantly in immune infiltration and therapeutic responses between patients, demanding a mouse model with appropriate heterogeneity to investigate mechanistic differences.MethodsWe developed a unique HNSCC mouse model to investigate underlying mechanisms of heterogeneous antitumor immunity. This model system may provide a better control for tumor-intrinsic and host-genetic variables, thereby uncovering the contribution of the adaptive immunity to tumor eradication. We employed single-cell T-cell receptor (TCR) sequencing coupled with single-cell RNA sequencing to identify the difference in TCR repertoire of CD8 tumor-infiltrating lymphocytes (TILs) and the unique activation states linked with different TCR clonotypes.ResultsWe discovered that genetically identical wild-type recipient mice responded heterogeneously to the same squamous cell carcinoma tumors orthotopically transplanted into the buccal mucosa. While tumors initially grew in 100% of recipients and most developed aggressive tumors, ~25% of recipients reproducibly eradicated tumors without intervention. Heterogeneous antitumor responses were dependent on CD8 T cells. Consistently, CD8 TILs in regressing tumors were significantly increased and more activated. Single-cell TCR-sequencing revealed that CD8 TILs from both growing and regressing tumors displayed evidence of clonal expansion compared with splenic controls. However, top TCR clonotypes and TCR specificity groups appear to be mutually exclusive between regressing and growing TILs. Furthermore, many TCRα/TCRβ sequences only occur in one recipient. By coupling single-cell transcriptomic analysis with unique TCR clonotypes, we found that top TCR clonotypes clustered in distinct activation states in regressing versus growing TILs. Intriguingly, the few TCR clonotypes shared between regressors and progressors differed greatly in their activation states, suggesting a more dominant influence from tumor microenvironment than TCR itself on T cell activation status.ConclusionsWe reveal that intrinsic differences in the TCR repertoire of TILs and their different transcriptional trajectories may underlie the heterogeneous antitumor immune responses in different hosts. We suggest that antitumor immune responses are highly individualized and different hosts employ different TCR specificities against the same tumors, which may have important implications for developing personalized cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document