scholarly journals Integrated Analyses of Growth Differentiation Factor-15 Concentration and Cardiometabolic Diseases in Humans

Author(s):  
Susanna Lemmela ◽  
Eleanor M Wigmore ◽  
Christian Benner ◽  
Aki Havulinna ◽  
Rachel MY Ong ◽  
...  

Growth differentiation factor 15 (GDF15) is a stress response cytokine that is elevated in several cardiometabolic diseases and has attracted interest as a potential therapeutic target. To further explore the association of GDF15 with human disease, we conducted a broad study into the phenotypic and genetic correlates of GDF15 concentration in up to 14,099 individuals. Assessment of 772 traits across 6,610 participants in FINRISK identified associations of GDF15 concentration with a range of phenotypes including all-cause mortality, cardiometabolic disease, respiratory diseases and psychiatric disorders as well as inflammatory markers. A meta-analysis of genome-wide association studies (GWAS) of GDF15 concentration across 3 different assay platforms (n=14,099) confirmed significant heterogeneity due to a common missense variant rs1058587 in GDF15, potentially due to epitope-binding artefacts. After conditioning on rs1058587, statistical fine-mapping identified 4 independent putative causal signals at the locus. Mendelian randomisation (MR) analysis did not find evidence of a causal relationship between GDF15 concentration and cardiometabolic traits. Using reverse MR, we identified a potential causal association of body mass index on GDF15 (IVW pFDR=0.0072). Taken together, our data do not support a role for elevated GDF15 concentrations as a causal factor in human cardiometabolic disease but support its role as a biomarker of metabolic stress.

2017 ◽  
Author(s):  
Rosa B. Thorolfsdottir ◽  
Gardar Sveinbjornsson ◽  
Patrick Sulem ◽  
Stefan Jonsson ◽  
Gisli H. Halldorsson ◽  
...  

AbstractWe performed a meta-analysis of genome-wide association studies on atrial fibrillation (AF) among 14,710 cases and 373,897 controls from Iceland and 14,792 cases and 393,863 controls from the UK Biobank, focusing on low frequency coding and splice mutations, with follow-up in samples from Norway and the US. We observed associations with two missense (OR=1.19 for both) and one splice-donor mutation (OR=1.52) in RPL3L, encoding a ribosomal protein primarily expressed in skeletal muscle and heart. Analysis of 167 RNA samples from the right atrium revealed that the splice donor mutation in RPL3L results in exon skipping. AF is the first disease associated with RPL3L and RPL3L is the first ribosomal gene implicated in AF. This finding is consistent with tissue specialization of ribosomal function. We also found an association with a missense variant in MYZAP (OR=1.37), encoding a component of the intercalated discs of cardiomyocytes, the organelle harbouring most of the mutated proteins involved in arrhythmogenic right ventricular cardiomyopathy. Both discoveries emphasize the close relationship between the mechanical and electrical function of the heart.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng-Fei Wu ◽  
Xing-Hao Zhang ◽  
Ping Zhou ◽  
Rui Yin ◽  
Xiao-Ting Zhou ◽  
...  

BackgroundPrevious observational studies have suggested that associations exist between growth differentiation factor 15 (GDF-15) and neurodegenerative diseases. We aimed to investigate the causal relationships between GDF-15 and Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS).MethodsUsing summary-level datasets from genome-wide association studies of European ancestry, we performed a two-sample Mendelian randomization (MR) study. Genetic variants significantly associated (p < 5 × 10–8) with GDF-15 were selected as instrumental variables (n = 5). An inverse-variance weighted method was implemented as the primary MR approach, while weighted median, MR–Egger, leave-one-out analysis, and Cochran’s Q-test were conducted as sensitivity analyses. All analyses were performed using R 3.6.1 with relevant packages.ResultsMR provided evidence for the association of elevated GDF-15 levels with a higher risk of AD (odds ratio = 1.14; 95% confidence interval, 1.04–1.24; p = 0.004). In the reverse direction, Mendelian randomization suggested no causal effect of genetically proxied risk of AD on circulating GDF-15 (p = 0.450). The causal effects of GDF-15 on PD (p = 0.597) or ALS (p = 0.120) were not identified, and the MR results likewise did not support the association of genetic liability to PD or ALS with genetically predicted levels of GDF-15. No evident heterogeneity or horizontal pleiotropy was revealed by multiple sensitivity analyses.ConclusionWe highlighted the role of GDF-15 in AD as altogether a promising diagnostic marker and a therapeutic target.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sonia Shah ◽  
◽  
Albert Henry ◽  
Carolina Roselli ◽  
Honghuang Lin ◽  
...  

AbstractHeart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.


2021 ◽  
Author(s):  
Vasiliki Lagou ◽  
Longda Jiang ◽  
Anna Ulrich ◽  
Liudmila Zudina ◽  
Karla Sofia Gutiérrez González ◽  
...  

Homeostatic control of blood glucose requires different physiological responses in the fasting and post-prandial states. We reasoned that glucose measurements under non-standardised conditions (random glucose, RG) may capture diverse glucoregulatory processes more effectively than previous genome-wide association studies (GWAS) of fasting glycaemia or after standardised glucose loads. Through GWAS meta-analysis of RG in 493,036 individuals without diabetes of diverse ethnicities we identified 128 associated loci represented by 162 distinct signals, including 14 with sex-dimorphic effects, 9 discovered through trans-ethnic analysis, and 70 novel signals for glycaemic traits. Novel RG loci were particularly enriched in expression in the ileum and colon, indicating a prominent role for the gastrointestinal tract in the control of blood glucose. Functional studies and molecular dynamics simulations of coding variants of GLP1R, a well-established type 2 diabetes treatment target, provided a genetic framework for optimal selection of GLP-1R agonist therapy. We also provided new evidence from Mendelian randomisation that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Thus, our approach based on RG GWAS provided wide-ranging insights into the biology of glucose regulation, diabetes complications and the potential for treatment stratification.


2019 ◽  
Author(s):  
Sonia Shah ◽  
Albert Henry ◽  
Carolina Roselli ◽  
Honghuang Lin ◽  
Garðar Sveinbjörnsson ◽  
...  

AbstractHeart failure (HF) is a leading cause of morbidity and mortality worldwide1. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained2–4. We report the largest GWAS meta-analysis of HF to-date, comprising 47,309 cases and 930,014 controls. We identify 12 independent variant associations with HF at 11 genomic loci, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function suggesting shared genetic aetiology. Expression quantitative trait analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homeostasis (BAG3), and cellular senescence (CDKN1A). Using Mendelian randomisation analysis we provide new evidence supporting previously equivocal causal roles for several HF risk factors identified in observational studies, and demonstrate CAD-independent effects for atrial fibrillation, body mass index, hypertension and triglycerides. These findings extend our knowledge of the genes and pathways underlying HF and may inform the development of new therapeutic approaches.


2021 ◽  
Vol 12 ◽  
Author(s):  
He Li ◽  
Chen Zhang ◽  
Yong Ji

The susceptibility of the GAK rs1564282 variant in Parkinson’s disease (PD) in Europeans was identified using a series of published genome-wide association studies. Recently, some studies focused on the association between rs1564282 and PD risk in Chinese populations but with inconsistent results. Thus, we conducted an updated meta-analysis with a total of 7,881 samples (4,055 PD cases and 3,826 controls) from eligible studies. After excluding significant heterogeneity, we showed that the rs1564282 variant was significantly associated with PD in Chinese populations (p = 1.00E-04, odds ratio = 1.28 and 95% confidence interval = 1.16–1.42). The sensitivity analysis showed that the association between rs1564282 and PD was not greatly influenced, and there was no significant publication bias among the included studies. Consequently, this meta-analysis indicates that the GAK rs1564282 variant is significantly associated with susceptibility to PD in Chinese populations.


2019 ◽  
Vol 95 (1125) ◽  
pp. 378-381 ◽  
Author(s):  
Sang-Cheol Bae ◽  
Young Ho Lee

ObjectiveTo search out whether or not years of education is causally related to rheumatoid arthritis (RA).MethodWe conducted a two-sample Mendelian randomisation (MR) analysis employing inverse-variance weighted (IVW), weighted median and MR-Egger regression analysis. We chose statistic data of years of education from the UK Biobank genome-wide association studies (GWASs) (n=293 723) as the exposure and a meta-analysis of GWASs of RA with autoantibody (n=5539) and European controls (n=20 169) as the outcome.ResultsWe selected a total of 49 single nucleotide polymorphisms as instrumental variables (IVs). The IVW method instructed an inverse causative relationship between years of education and RA (β=− 0.039, SE=0.283, p=0.008). MR-Egger regression test showed that directional pleiotropy seems not to bias the MR results (intercept=0.028; p=0.358). MR-Egger analysis demonstrated no causative relationship between RA and years of education (β=− 2.320, SE=1.709, p=0.181). However, the weighted median approach indicated a causative association between RA and years of education (β=−0.950, SE=0.355, p=0.008).ConclusionsThe MR analysis supported a potential inverse causative relationship between years of education and development of RA.


2021 ◽  
Author(s):  
Minako Imamura ◽  
Atsushi Takahashi ◽  
Masatoshi Matsunami ◽  
Momoko Horikoshi ◽  
Minoru Iwata ◽  
...  

Abstract Several reports have suggested that genetic susceptibility contributes to the development and progression of diabetic retinopathy. We aimed to identify genetic loci that confer susceptibility to diabetic retinopathy in Japanese patients with type 2 diabetes. We analysed 5 790 508 single nucleotide polymorphisms (SNPs) in 8880 Japanese patients with type 2 diabetes, 4839 retinopathy cases and 4041 controls, as well as 2217 independent Japanese patients with type 2 diabetes, 693 retinopathy cases, and 1524 controls. The results of these two genome-wide association studies (GWAS) were combined with an inverse variance meta-analysis (Stage-1), followed by de novo genotyping for the candidate SNP loci (p < 1.0 × 10−4) in an independent case–control study (Stage-2, 2260 cases and 723 controls). After combining the association data (Stage-1 and -2) using meta-analysis, the associations of two loci reached a genome-wide significance level: rs12630354 near STT3B on chromosome 3, p = 1.62 × 10−9, odds ratio (OR) = 1.17, 95% confidence interval (CI) 1.11–1.23, and rs140508424 within PALM2 on chromosome 9, p = 4.19 × 10−8, OR = 1.61, 95% CI 1.36–1.91. However, the association of these two loci were not replicated in Korean, European, or African American populations. Gene-based analysis using Stage-1 GWAS data identified a gene-level association of EHD3 with susceptibility to diabetic retinopathy (p = 2.17 × 10−6). In conclusion, we identified two novel SNP loci, STT3B and PALM2, and a novel gene, EHD3, that confers susceptibility to diabetic retinopathy; however, further replication studies are required to validate these associations.


Sign in / Sign up

Export Citation Format

Share Document