scholarly journals Proximal binding pocket Arg717 substitutions in Escherichia coli AcrB cause clinically relevant divergencies in resistance profiles

2021 ◽  
Author(s):  
Martijn Zwama ◽  
Kunihiko Nishino

Multidrug resistance (MDR) in bacteria can be caused by the over-expression of multidrug efflux pumps belonging to the Resistance-Nodulation-Division (RND) superfamily of proteins. These intrinsic or acquired pumps can export a wide range of antibiotics. Recently, amino acid substitutions within these pumps have been observed in resistant clinical strains. Among others, two of these worrying gain-of-function mutations are R717L and R717Q in the proximal binding pocket of efflux pump AcrB (AcrB-Sa) found in azithromycin-resistant Salmonella enterica spp. We investigated the ramifications of these (and other) mutations in phylogenetically closely related AcrB from Escherichia coli (AcrB-Ec). We found that AcrB-Ec harboring Arg717 substitutions were significantly more effective in exporting all tested macrolides, with an up to 8-fold increase in the minimum inhibitory concentration (MIC) values (from 16 to 128 µg/mL for azithromycin). Interestingly, gain-of-function was also seen for fluoroquinolones (2-fold higher MICs), while there was a consistent loss-of-function for the export of novobiocin and β-lactam cloxacillin (2-fold lower MICs), pointing to a protein adaptation, which simultaneously partly compromised the efflux ability of other compounds with different molecular properties. Disk diffusion susceptibility testing corroborated the findings, as the R717Q and R717L mutant strains had significantly smaller inhibition zones for macrolides and fluoroquinolones and a larger inhibition zone for novobiocin, compared to the wild type. The spread and independent emergences of these potent efflux pump mutations highlight the necessity of control of, and adjustments to, treatments with antibiotics and the need for novel antibiotics and efflux pump inhibitors.

2009 ◽  
Vol 192 (5) ◽  
pp. 1377-1386 ◽  
Author(s):  
Hong-Suk Kim ◽  
Daniel Nagore ◽  
Hiroshi Nikaido

ABSTRACT RND (resistance-nodulation-division) family transporters in Gram-negative bacteria frequently pump out a wide range of inhibitors and often contribute to multidrug resistance to antibiotics and biocides. An archetypal RND pump of Escherichia coli, AcrB, is known to exist as a homotrimer, and this construction is essential for drug pumping through the functionally rotating mechanism. MdtBC, however, appears different because two pump genes coexist within a single operon, and genetic deletion data suggest that both pumps must be expressed in order for the drug efflux to occur. We have expressed the corresponding genes, with one of them in a His-tagged form. Copurification of MdtB and MdtC under these conditions showed that they form a complex, with an average stoichiometry of 2:1. Unequivocal evidence that only the trimer containing two B protomers and one C protomer is active was obtained by expressing all possible combinations of B and C in covalently linked forms. Finally, conversion into alanine of the residues, known to form a proton translocation pathway in AcrB, inactivated transport only when made in MdtB, not when made in MdtC, a result suggesting that MdtC plays a different role not directly involved in drug binding and extrusion.


Author(s):  
Eamonn Reading ◽  
Zainab Ahdash ◽  
Chiara Fais ◽  
Vito Ricci ◽  
Xuan Wang Kan ◽  
...  

AbstractResistance-nodulation-division (RND) efflux pumps play a key role in inherent and evolved multidrug-resistance (MDR) in bacteria. AcrB is the prototypical member of the RND family and acts to recognise and export a wide range of chemically distinct molecules out of bacteria, conferring resistance to a variety of antibiotics. Although high resolution structures exist for AcrB, its conformational fluctuations and their putative role in function are largely unknown, preventing a complete mechanistic understanding of efflux and inhibition. Here, we determine these structural dynamics in the presence of AcrB substrates using hydrogen/deuterium exchange mass spectrometry, complemented by molecular modelling, drug binding and bacterial susceptibility studies. We show that the well-studied efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN) potentiates antibiotic activity by restraining drug-binding pocket dynamics, rather than preventing antibiotic binding. We also reveal that a drug-binding pocket substitution discovered within an MDR clinical isolate, AcrBG288D, modifies the plasticity of the transport pathway, which could explain its altered substrate specificity. Our results provide molecular insight into drug export and inhibition of a major MDR-conferring efflux pump and the important directive role of its dynamics.


2000 ◽  
Vol 182 (6) ◽  
pp. 1754-1756 ◽  
Author(s):  
Emiko Y. Rosenberg ◽  
Dzwokai Ma ◽  
Hiroshi Nikaido

ABSTRACT AcrD, a transporter belonging to the resistance-nodulation-division family, was shown to participate in the efflux of aminoglycosides. Deletion of the acrD gene decreased the MICs of amikacin, gentamicin, neomycin, kanamycin, and tobramycin by a factor of two to eight, and ΔacrD cells accumulated higher levels of [3H]dihydrostreptomycin and [3H]gentamicin than did the parent strain.


1998 ◽  
Vol 42 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Ramakrishnan Srikumar ◽  
Tatiana Kon ◽  
Naomasa Gotoh ◽  
Keith Poole

ABSTRACT The mexCD-oprJ and mexAB-oprM operons encode components of two distinct multidrug efflux pumps inPseudomonas aeruginosa. To assess the contribution of individual components to antibiotic resistance and substrate specificity, these operons and their component genes were cloned and expressed in Escherichia coli. Western immunoblotting confirmed expression of the P. aeruginosa efflux pump components in E. coli strains expressing and deficient in the endogenous multidrug efflux system (AcrAB), although only the ΔacrAB strain, KZM120, demonstrated increased resistance to antibiotics in the presence of the P. aeruginosa efflux genes. E. coli KZM120 expressing MexAB-OprM showed increased resistance to quinolones, chloramphenicol, erythromycin, azithromycin, sodium dodecyl sulfate (SDS), crystal violet, novobiocin, and, significantly, several β-lactams, which is reminiscent of the operation of this pump in P. aeruginosa. This confirmed previous suggestions that MexAB-OprM provides a direct contribution to β-lactam resistance via the efflux of this group of antibiotics. An increase in antibiotic resistance, however, was not observed when MexAB or OprM alone was expressed in KZM120. Thus, despite the fact that β-lactams act within the periplasm, OprM alone is insufficient to provide resistance to these agents. E. coli KZM120 expressing MexCD-OprJ also showed increased resistance to quinolones, chloramphenicol, macrolides, SDS, and crystal violet, though not to most β-lactams or novobiocin, again somewhat reminiscent of the antibiotic resistance profile of MexCD-OprJ-expressing strains ofP. aeruginosa. Surprisingly, E. coli KZM120 expressing MexCD alone also showed an increase in resistance to these agents, while an OprJ-expressing KZM120 failed to demonstrate any increase in antibiotic resistance. MexCD-mediated resistance, however, was absent in a tolC mutant of KZM120, indicating that MexCD functions in KZM120 in conjunction with TolC, the previously identified outer membrane component of the AcrAB-TolC efflux system. These data confirm that a tripartite efflux pump is necessary for the efflux of all substrate antibiotics and that the P. aeruginosa multidrug efflux pumps are functional and retain their substrate specificity in E. coli.


2019 ◽  
Vol 7 (9) ◽  
pp. 285 ◽  
Author(s):  
Pasqua ◽  
Grossi ◽  
Zennaro ◽  
Fanelli ◽  
Micheli ◽  
...  

Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes.


2008 ◽  
Vol 52 (9) ◽  
pp. 3202-3209 ◽  
Author(s):  
George P. Tegos ◽  
Kayo Masago ◽  
Fatima Aziz ◽  
Andrew Higginbotham ◽  
Frank R. Stermitz ◽  
...  

ABSTRACT Antimicrobial photodynamic inactivation (APDI) combines a nontoxic photoactivatable dye or photosensitizer (PS) with harmless visible light to generate singlet oxygen and reactive oxygen species that kill microbial cells. Cationic phenothiazinium dyes, such as toluidine blue O (TBO), are the only PS used clinically for APDI, and we recently reported that this class of PS are substrates of multidrug efflux pumps in both gram-positive and gram-negative bacteria. We now report that APDI can be significantly potentiated by combining the PS with an efflux pump inhibitor (EPI). Killing of Staphylococcus aureus mediated by TBO and red light is greatly increased by coincubation with known inhibitors of the major facilitator pump (NorA): the diphenyl urea INF271, reserpine, 5′-methoxyhydnocarpin, and the polyacylated neohesperidoside, ADH7. The potentiation effect is greatest in the case of S. aureus mutants that overexpress NorA and least in NorA null cells. Addition of the EPI before TBO has a bigger effect than addition of the EPI after TBO. Cellular uptake of TBO is increased by EPI. EPI increased photodynamic inactivation killing mediated by other phenothiazinium dyes, such as methylene blue and dimethylmethylene blue, but not that mediated by nonphenothiazinium PS, such as Rose Bengal and benzoporphyrin derivative. Killing of Pseudomonas aeruginosa mediated by TBO and light was also potentiated by the resistance nodulation division pump (MexAB-OprM) inhibitor phenylalanine-arginine beta-naphthylamide but to a lesser extent than for S. aureus. These data suggest that EPI could be used in combination with phenothiazinium salts and light to enhance their antimicrobial effect against localized infections.


2001 ◽  
Vol 183 (13) ◽  
pp. 3967-3973 ◽  
Author(s):  
Antonia Rojas ◽  
Estrella Duque ◽  
Gilberto Mosqueda ◽  
Geir Golden ◽  
Ana Hurtado ◽  
...  

ABSTRACT In Pseudomonas putida DOT-T1E multidrug efflux pumps of the resistance-nodulation-division family make a major contribution to solvent resistance. Two pumps have been identified: TtgABC, expressed constitutively, and TtgDEF, induced by aromatic hydrocarbons. A double mutant lacking both efflux pumps was able to survive a sudden toluene shock if and only if preinduced with small amounts of toluene supplied via the gas phase. In this article we report the identification and characterization in this strain of a third efflux pump, named TtgGHI. The ttgGHI genes form an operon that is expressed constitutively at high levels from a single promoter. In the presence of toluene the operon is expressed at an even higher level from two promoters, the constitutive one and a previously unreported one that is inducible and that partially overlaps the constitutive promoter. By site-directed mutagenesis we constructed a single ttgHmutant which was shown to be unable to survive sudden 0.3% (vol/vol) toluene shocks regardless of the preculture conditions. The mutation was transferred to single and double mutants to construct mutant strains in which two or all three pumps are knocked out. Survival analysis of induced and noninduced cells revealed that the TtgABC and TtgGHI pumps extruded toluene, styrene, m-xylene, ethylbenzene, and propylbenzene, whereas the TtgDEF pump removed only toluene and styrene. The triple mutant was hypersensitive to toluene, as shown by its inability to grow with toluene supplied via the vapor phase.


2016 ◽  
Vol 60 (4) ◽  
pp. 1967-1973 ◽  
Author(s):  
Rachel L. Soon ◽  
Justin R. Lenhard ◽  
Zackery P. Bulman ◽  
Patricia N. Holden ◽  
Pamela Kelchlin ◽  
...  

ABSTRACTDespite a dearth of new agents currently being developed to combat multidrug-resistant Gram-negative pathogens, the combination of ceftolozane and tazobactam was recently approved by the Food and Drug Administration to treat complicated intra-abdominal and urinary tract infections. To characterize the activity of the combination product, time-kill studies were conducted against 4 strains ofEscherichia colithat differed in the type of β-lactamase they expressed. The four investigational strains included 2805 (no β-lactamase), 2890 (AmpC β-lactamase), 2842 (CMY-10 β-lactamase), and 2807 (CTX-M-15 β-lactamase), with MICs to ceftolozane of 0.25, 4, 8, and >128 mg/liter with no tazobactam, and MICs of 0.25, 1, 4, and 8 mg/liter with 4 mg/liter tazobactam, respectively. All four strains were exposed to a 6 by 5 array of ceftolozane (0, 1, 4, 16, 64, and 256 mg/liter) and tazobactam (0, 1, 4, 16, and 64 mg/liter) over 48 h using starting inocula of 106and 108CFU/ml. While ceftolozane-tazobactam achieved bactericidal activity against all 4 strains, the concentrations of ceftolozane and tazobactam required for a ≥3-log reduction varied between the two starting inocula and the 4 strains. At both inocula, the Hill plots (R2> 0.882) of ceftolozane revealed significantly higher 50% effective concentrations (EC50s) at tazobactam concentrations of ≤4 mg/liter than those at concentrations of ≥16 mg/liter (P< 0.01). Moreover, the EC50s at 108CFU/ml were 2.81 to 66.5 times greater than the EC50s at 106CFU/ml (median, 10.7-fold increase;P= 0.002). These promising results indicate that ceftolozane-tazobactam achieves bactericidal activity against a wide range of β-lactamase-producingE. colistrains.


2013 ◽  
Vol 58 (2) ◽  
pp. 722-733 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
Hong-Suk Kim ◽  
Son T. Nguyen ◽  
Chad Houseweart ◽  
...  

ABSTRACTMembers of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC ofEscherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of theEnterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versusE. coliAB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) ofE. coliAB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active againstEnterobacteriaceaespecies andPseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens.


2006 ◽  
Vol 188 (11) ◽  
pp. 3757-3762 ◽  
Author(s):  
Govindsamy Vediyappan ◽  
Tatyana Borisova ◽  
Joe A. Fralick

ABSTRACT VceC is the outer membrane component of the major facilitator (MF) VceAB-VceC multiple-drug-resistant (MDR) efflux pump of Vibrio cholerae. TolC is the outer membrane component of the resistance-nodulation-division AcrAB-TolC efflux pump of Escherichia coli. Although these proteins share little amino acid sequence identity, their crystal structures can be readily superimposed upon one another. In this study, we have asked if TolC and VceC are interchangeable for the functioning of the AcrAB and VceAB pumps. We have found that TolC can replace VceC to form a functional VceAB-TolC MDR pump, but VceC cannot replace TolC to form a functional AcrAB-VceC pump. However, we have been able to isolate gain-of-function (gof) VceC mutants which can functionally interface with AcrAB. These mutations map to four different amino acids located at the periplasmic tip of VceC. Chemical cross-linkage experiments indicate that both wild-type and gof mutant VceC can physically interact with the AcrAB complex, suggesting that these gof mutations are not affecting the recruitment of VceC to the AcrAB complex but rather its ability to functionally interface with the AcrAB pump.


Sign in / Sign up

Export Citation Format

Share Document