scholarly journals ANTAGONISM OF SAXITOXIN AND TETRODOTOXIN BLOCK BY INTERNAL MONOVALENT CATIONS IN SQUID AXON

2021 ◽  
Author(s):  
Gerry S. Oxford ◽  
Paul Forscher ◽  
P. Kay Wagoner ◽  
David J. Adams

The block of voltage-dependent sodium channels by saxitoxin (STX) and tetrodotoxin (TTX) was investigated in voltage-clamped squid giant axons internally perfused with a variety of permeant monovalent cations. Substitution of internal Na+ by either NH4+ or N2H5+ resulted in a reduction of outward current through sodium channels under control conditions. In contrast, anomalous increases in both inward and outward currents were seen for the same ions if some of the channels were blocked by STX or TTX, suggesting a relief of block by these internal cations. External NH4+ was without effect on the apparent magnitude of toxin block. Likewise, internal inorganic monovalent cations were without effect, suggesting that proton donation by NH4+ might be involved in reducing toxin block. Consistent with this hypothesis, decreases in internal pH mimicked internal perfusion with NH4+ in reducing toxin block. The interaction between internally applied protons and externally applied toxin molecules appears to be competitive, as transient increases in sodium channel current were observed during step increases in intracellular pH in the presence of a fixed STX concentration. In addition to these effects on toxin block, low internal pH produced a voltage-dependent block of sodium channels and enhanced steady-state inactivation. Elevation of external buffer capacity only marginally diminished the modulation of STX block by internal NH4+, suggesting that alkalinization of the periaxonal space and a resultant decrease in the cationic STX concentration during NH4+ perfusion may play only a minor role in the effect. These observations indicate that internal monovalent cations can exert trans-channel influences on external toxin binding sites on sodium channels.

2007 ◽  
Vol 293 (2) ◽  
pp. C783-C789 ◽  
Author(s):  
Christian Rosker ◽  
Birgit Lohberger ◽  
Doris Hofer ◽  
Bibiane Steinecker ◽  
Stefan Quasthoff ◽  
...  

The blocking efficacy of 4,9-anhydro-TTX (4,9-ah-TTX) and TTX on several isoforms of voltage-dependent sodium channels, expressed in Xenopus laevis oocytes, was tested (Nav1.2, Nav1.3, Nav1.4, Nav1.5, Nav1.6, Nav1.7, and Nav1.8). Generally, TTX was 40–231 times more effective, when compared with 4,9-ah-TTX, on a given isoform. An exception was Nav1.6, where 4,9-ah-TTX in nanomole per liter concentrations sufficed to result in substantial block, indicating that 4,9-ah-TTX acts specifically at this peculiar isoform. The IC50 values for TTX/4,9-ah-TTX were as follows (in nmol/l): 7.8 ± 1.3/1,260 ± 121 (Nav1.2), 2.8 ± 2.3/341 ± 36 (Nav1.3), 4.5 ± 1.0/988 ± 62 (Nav1.4), 1,970 ± 565/78,500 ± 11,600 (Nav1.5), 3.8 ± 1.5/7.8 ± 2.3 (Nav1.6), 5.5 ± 1.4/1,270 ± 251 (Nav1.7), and 1,330 ± 459/>30,000 (Nav1.8). Analysis of approximal half-maximal doses of both compounds revealed minor effects on voltage-dependent activation only, whereas steady-state inactivation was shifted to more negative potentials by both TTX and 4,9-ah-TTX in the case of the Nav1.6 subunit, but not in the case of other TTX-sensitive ones. TTX shifted steady-state inactivation also to more negative potentials in case of the TTX-insensitive Nav1.5 subunit, where it also exerted profound effects on the time course of recovery from inactivation. Isoform-specific interaction of toxins with ion channels is frequently observed in the case of proteinaceous toxins. Although the sensitivity of Nav1.1 to 4,9-ah-TTX is not known, here we report evidence on a highly isoform-specific TTX analog that may well turn out to be an invaluable tool in research for the identification of Nav1.6-mediated function, but also for therapeutic intervention.


1995 ◽  
Vol 106 (4) ◽  
pp. 641-658 ◽  
Author(s):  
M E O'Leary ◽  
L Q Chen ◽  
R G Kallen ◽  
R Horn

A pair of tyrosine residues, located on the cytoplasmic linker between the third and fourth domains of human heart sodium channels, plays a critical role in the kinetics and voltage dependence of inactivation. Substitution of these residues by glutamine (Y1494Y1495/QQ), but not phenylalanine, nearly eliminates the voltage dependence of the inactivation time constant measured from the decay of macroscopic current after a depolarization. The voltage dependence of steady state inactivation and recovery from inactivation is also decreased in YY/QQ channels. A characteristic feature of the coupling between activation and inactivation in sodium channels is a delay in development of inactivation after a depolarization. Such a delay is seen in wild-type but is abbreviated in YY/QQ channels at -30 mV. The macroscopic kinetics of activation are faster and less voltage dependent in the mutant at voltages more negative than -20 mV. Deactivation kinetics, by contrast, are not significantly different between mutant and wild-type channels at voltages more negative than -70 mV. Single-channel measurements show that the latencies for a channel to open after a depolarization are shorter and less voltage dependent in YY/QQ than in wild-type channels; however the peak open probability is not significantly affected in YY/QQ channels. These data demonstrate that rate constants involved in both activation and inactivation are altered in YY/QQ channels. These tyrosines are required for a normal coupling between activation voltage sensors and the inactivation gate. This coupling insures that the macroscopic inactivation rate is slow at negative voltages and accelerated at more positive voltages. Disruption of the coupling in YY/QQ alters the microscopic rates of both activation and inactivation.


1987 ◽  
Vol 89 (6) ◽  
pp. 873-903 ◽  
Author(s):  
W N Green ◽  
L B Weiss ◽  
O S Andersen

The guanidinium toxin-induced inhibition of the current through voltage-dependent sodium channels was examined for batrachotoxin-modified channels incorporated into planar lipid bilayers that carry no net charge. To ascertain whether a net negative charge exists in the vicinity of the toxin-binding site, we studied the channel closures induced by tetrodotoxin (TTX) and saxitoxin (STX) over a wide range of [Na+]. These toxins carry charges of +1 and +2, respectively. The frequency and duration of the toxin-induced closures are voltage dependent. The voltage dependence was similar for STX and TTX, independent of [Na+], which indicates that the binding site is located superficially at the extracellular surface of the sodium channel. The toxin dissociation constant, KD, and the rate constant for the toxin-induced closures, kc, varied as a function of [Na+]. The Na+ dependence was larger for STX than for TTX. Similarly, the addition of tetraethylammonium (TEA+) or Zn++ increased KD and decreased kc more for STX than for TTX. These differential effects are interpreted to arise from changes in the electrostatic potential near the toxin-binding site. The charges giving rise to this potential must reside on the channel since the bilayers had no net charge. The Na+ dependence of the ratios KDSTX/KDTTX and kcSTX/kcTTX was used to estimate an apparent charge density near the toxin-binding site of about -0.33 e X nm-2. Zn++ causes a voltage-dependent block of the single-channel current, as if Zn++ bound at a site within the permeation path, thereby blocking Na+ movement. There was no measurable interaction between Zn++ at its blocking site and STX or TTX at their binding site, which suggests that the toxin-binding site is separate from the channel entrance. The separation between the toxin-binding site and the Zn++ blocking site was estimated to be at least 1.5 nm. A model for toxin-induced channel closures is proposed, based on conformational changes in the channel subsequent to toxin binding.


1989 ◽  
Vol 62 (4) ◽  
pp. 935-945 ◽  
Author(s):  
D. G. Lang ◽  
M. J. Correia

1. The ionic conductances present in putative type II hair cells enzymatically dissociated from the anterior, posterior, and lateral semicircular canal cristae of the white king pigeon (Columba livia) vestibule were studied under whole cell voltage clamp. 2. Two classes of voltage-dependent potassium conductances were distinguishable on the basis of the time course of activation and inactivation and pharmacologic sensitivity. The rapid potassium conductance, IA, as inhibited by 6 mM 4-aminopyridine (4-AP), whereas the slow potassium conductance, IK, was inhibited by 50 mM tetraethylammonium (TEA). These conductances were not affected by extracellular calcium removal. IA was quite similar to the rapidly-inactivating A-current of molluscan soma, whereas IK was more like the delayed rectifier of molluscan soma. 3. The steady-state inactivation of IA occurred over a potential range from -100 to -40 mV. The threshold for activation of IA occurred between -60 and -50 mV. The slope conductance of the I-V curve over a range of -50 to -20 mV was 13.7 nS when the conditioning pulse was -100 mV, and we estimate it to be approximately 1-2 nS from the resting membrane potential of -56 mV. 4. The steady-state inactivation of IK was approximately 60% at -40 mV and was completely removed at -80 mV. The threshold for activation of IK was between -50 and -40 mV. The slope conductance of the I-V curve over a range of -50 to -20 mV was 10.5 nS when the conditioning pulse was -80 mV, and we estimate it to be approximately 6-7 nS from the resting potential of -56 mV. 5. At -56 mV (the average resting membrane potential of putative type II semicircular canal hair cells), approximately 10-14% of IA channels and approximately 57-70% of IK channels were not inactivated: thus IA and IK can contribute to the outward current during small depolarizations from rest. 6. A small calcium-dependent outward current, IK(Ca), could be elicited during step depolarizations from a holding potential of -40 mV. This calcium-dependent current was active over the range of -20 to +40 mV. 7. Inward currents could not be detected when the cells were exposed to normal physiological solutions. However, when the outward currents were blocked with internal cesium and the external solution contained 20 mM barium, sustained inward currents with rapid activation kinetics could be detected. The threshold for activation of the inward current occurred at -40 mV, and the I-V relationship peaked at -10 mV.(ABSTRACT TRUNCATED AT 400 WORDS)


2001 ◽  
Vol 117 (6) ◽  
pp. 505-518 ◽  
Author(s):  
Haijun Chen ◽  
Stefan H. Heinemann

The effects of the scorpion α-toxins Lqh II, Lqh III, and LqhαIT on human cardiac sodium channels (hH1), which were expressed in human embryonic kidney (HEK) 293 cells, were investigated. The toxins removed fast inactivation with EC50 values of <2.5 nM (Lqh III), 12 nM (Lqh II), and 33 nM (LqhαIT). Association and dissociation rates of Lqh III were much slower than those of Lqh II and LqhαIT, such that Lqh III would not dissociate from the channel during a cardiac activation potential. The voltage dependence of toxin dissociation from hH1 channels was nearly the same for all toxins tested, but it was different from that found for skeletal muscle sodium channels (μI; Chen et al. 2000). These results indicate that the voltage dependence of toxin binding is a property of the channel protein. Toxin dissociation remained voltage dependent even at high voltages where activation and fast inactivation is saturated, indicating that the voltage dependence originates from other sources. Slow inactivation of hH1 and μI channels was significantly enhanced by Lqh II and Lqh III. The half-maximal voltage of steady-state slow inactivation was shifted to negative values, the voltage dependence was increased, and, in particular for hH1, slow inactivation at high voltages became more complete. This effect exceeded an expected augmentation of slow inactivation owing to the loss of fast inactivation and, therefore, shows that slow sodium channel inactivation may be directly modulated by scorpion α-toxins.


1993 ◽  
Vol 101 (1) ◽  
pp. 27-43 ◽  
Author(s):  
P Daumas ◽  
O S Andersen

The acid titration function of bilayer-incorporated batrachotoxin (BTX)-modified sodium channels was examined in experiments in which the pH was decreased symmetrically, on both sides of the membrane, or asymmetrically, on only one side. In an attempt to minimize interpretational ambiguities, the experiments were done in 1.0 M NaCl (buffered to the appropriate pH) with channels incorporated into net neutral bilayers. When the pH was decreased symmetrically (from 7.4 to 4.5), the small-signal conductance (g) decreased in accordance with the predictions of a simple (single-site) titration function with a pK of approximately 4.9. As the pH was decreased below 6.5, the single-channel current-voltage (i-V) relation became increasingly rectifying, with the inward current being decreased more than the outward current. When the pH was decreased asymmetrically (with the pH of the other solution being held constant at 7.4), the titration behavior was different for extra- and intracellular acidification. With extracellular acidification, the reduction in g could still be approximated by a simple titration function with a pK of approximately 4.6, and there was a pronounced rectification at pHs < or = 6 (cf. Woodhull, A. M. 1973. Journal of General Physiology. 61:687-708). The voltage dependence of the block could be described by assuming that protons enter the pore and bind to a site with a pK of approximately 4.6 at an apparent electrical distance of approximately 0.1 from the extracellular entrance. With intracellular acidification there was only a slight reduction in g, and the g-pH relation could not be approximated by a simple titration curve, suggesting that protons can bind to several sites. The i-V relations were still rectifying, and the voltage-dependent block could be approximated by assuming that protons enter the pore and bind to a site with a pK of approximately 4.1 at an apparent electrical distance of approximately 0.2 from the intracellular entrance. Based on the difference between the three g-pH relations, we conclude that there are at least two proton binding sites in the pore and that they can be occupied simultaneously.


1996 ◽  
Vol 76 (2) ◽  
pp. 668-682 ◽  
Author(s):  
F. M. Zhou ◽  
J. J. Hablitz

1. Whole cell patch-clamp techniques, combined with direct visualization of neurons, were used to study voltage-dependent potassium currents in layer 1 neurons and layer II/III pyramidal cells. 2. In the presence of tetrodotoxin, step depolarizations evoked an outward current. This current had a complex waveform and appeared to be a composite of early and late components. The early peak of the composite K+ outward current was larger in layer I neurons. 3. In both layer I and pyramidal cells, the composite outward K+ current could be separated into two components based on kinetic and pharmacological properties. The early component was termed I(A) because it was a transient outward current activating rapidly and then decaying. I(A) was more sensitive to blocking by 4-aminopyridine (4-AP) than tetraethylammonium (TEA). The second component, termed the delayed rectifier or I(DR), activated relatively slowly and did not decay significantly during a 200-ms test pulse. I(DR) was insensitive to blocking by 4-AP at concentrations up to 4 mM and blocked by > 60% by 40-60 mM TEA. 4. I(A) kinetics were examined in the presence of 40-60 mM TEA. Under these conditions, I(A) began to activate between -40 and -30 mV. Half-maximal activation occurred around 0 mV. In both layer I and pyramidal cells, the half-inactivation potential (Vh-inact) was around or more positive than -50 mV. At -60 mV, > 70% of I(A) conductance was available. I(A) decayed along a single exponential time course with a time constant of approximately 15 ms. This decay showed little voltage dependence. 5. In both layer I and pyramidal cells, I(DR) was studied in the presence of 4 mM 4-AP to block I(A) and in saline containing 0.2 mM Ca2+ and 3.6 mM Mg2+ to reduce contributions from Ca2+-dependent K+ currents. Under these conditions, I(DR) began to activate at -35 to -25 mV with Vh-act of 3.6 +/- 4.5 mV (mean +/- SD). The 10-90% rise time of I(DR) was 15 ms at 30 mV. At 2.2 ms after the onset of the command potential to +30 mV, I(DR) could reach a significant amplitude (approximately 1.5 nA in layer I neurons and 2.2 nA in pyramidal cells depending on the cell size). When long test pulses (> or = 1,000 ms) were used, a decay time constant approximately 800 ms at +40 mV was observed. In both layer I and pyramidal cells, steady state inactivation of I(DR) was minimal. 6. These results indicate that I(A) and I(DR) are the two major hyperpolarizing currents in layer I and pyramidal cells. The kinetics and pharmacological properties of I(A) and I(DR) were not significantly different in fast-spiking layer I neurons and regular-spiking layer II/III pyramidal cells. The relatively positive activation threshold (more than or equal to -40 mV) of both I(A) and I(DR) suggest that they do not play a role in neuronal behavior below action potential (AP) threshold and that their properties are more suitable to repolarize AP. The greater density of I(A) in layer I neurons appears responsible for fast spike generation.


2015 ◽  
Vol 147 (1) ◽  
pp. 25-37 ◽  
Author(s):  
José J. De Jesús-Pérez ◽  
Alejandra Castro-Chong ◽  
Ru-Chi Shieh ◽  
Carmen Y. Hernández-Carballo ◽  
José A. De Santiago-Castillo ◽  
...  

CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl−, Br−, SCN−, and I−) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl−]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate.


1992 ◽  
Vol 68 (4) ◽  
pp. 1133-1142 ◽  
Author(s):  
M. Andreasen ◽  
J. J. Hablitz

1. Whole-cell patch-clamp techniques were used to record outward currents in embryonic rat neocortical neurons maintained in culture. In the presence of tetrodotoxin and cadmium, depolarization evoked an outward current with a complex waveform. This outward current consisted of an initial fast transient component and a late, slowly inactivating component. 2. The two outward current components could be separated pharmacologically with the use of tetraethylammonium (TEA) and 4-aminopyridine (4-AP). TEA (20 mM) applied extracellularly completely blocked the late component, unmasking a fast transient outward current (TOC). 4-AP (5 mM) applied extracellularly blocked the early component while reducing the late component by 27.8 +/- 9.7% (mean +/- SE). 3. The TOC activated after a short delay and rose rapidly to a peak. The time to peak was voltage dependent and decreased with depolarization. In the presence of 200 microM extracellular cadmium, activation threshold was around -25 mV, and current amplitude increased with depolarization. The voltage-conductance relationship was well fitted by the use of the Boltzmann equation with a Vm of +19 mV for half activation and a slope factor of +6 mV. 4. On sustained depolarization the TOC rapidly inactivated and decayed to baseline within 500-600 ms. The decay phase followed a single exponential time course with a time constant of 55-65 ms. The decay time was most rapid at potentials from +5 to +20 mV and increased slightly with further depolarization. 5. Steady-state inactivation of the TOC, in the presence of cadmium, was complete near -10 mV and was totally relieved at potentials more negative than -75 mV. With the use of the Boltzmann equation, a Vm of -34 mV for half inactivation and a slope factor of -8.6 mV were found. 6. Recovery of the TOC from steady-state inactivation followed a single exponential time course and was voltage dependent. When the membrane potential was held at -84 mV during the conditioning pulse, the time constant of recovery was 17 ms, increasing to 45.2 and 58.1 ms at holding potentials of -64 and -44 mV, respectively. Holding at potentials more negative than -84 mV produced no further change in the recovery time course. 7. The presence of 200 microM external cadmium altered the TOC activation and inactivation curves. Removal of cadmium produced a -16-mV shift in the Vm for half activation and a -25-mV shift in the inactivation curve. This sensitivity to cadmium is higher than that reported in other systems.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Katherine Guérard ◽  
Sébastien Tremblay

In serial memory for spatial information, some studies showed that recall performance suffers when the distance between successive locations increases relatively to the size of the display in which they are presented (the path length effect; e.g., Parmentier et al., 2005) but not when distance is increased by enlarging the size of the display (e.g., Smyth & Scholey, 1994). In the present study, we examined the effect of varying the absolute and relative distance between to-be-remembered items on memory for spatial information. We manipulated path length using small (15″) and large (64″) screens within the same design. In two experiments, we showed that distance was disruptive mainly when it is varied relatively to a fixed reference frame, though increasing the size of the display also had a small deleterious effect on recall. The insertion of a retention interval did not influence these effects, suggesting that rehearsal plays a minor role in mediating the effects of distance on serial spatial memory. We discuss the potential role of perceptual organization in light of the pattern of results.


Sign in / Sign up

Export Citation Format

Share Document