scholarly journals ANTIBODY-INDEPENDENT ANTITUMOR EFFECTS OF CD32A-CHIMERIC RECEPTOR T CELLS: IMPLICATIONS FOR BREAST CANCER PROGNOSIS AND TREATMENT.

2021 ◽  
Author(s):  
Giuseppe Sconocchia ◽  
Giulia Lanzilli ◽  
Valeriana Cesarini ◽  
Domenico Alessandro Sivestris ◽  
Roberto Arriga ◽  
...  

FcγRIIA (CD32A) and their ligands, including the immunoglobulin Fc fragment and pentraxins, are key players in a variety of innate immune responses. Still unclear is whether additional ligands of CD32A do exist. The objective of this study is to demonstrate that CD32A-chimeric receptor (CR) can be utilized for the identification of CD32A cell surface ligand(s). Among fifteen cancer cell lines tested, CD32A-CR T cells recognized three of breast cancer (BC) including the MDA-MB-468 and one colorectal carcinoma (HT29) in the absence of targeting antibodies. Conjugation of sensitive BC cells with CD32A-CR T cells induced CD32A polarization and down-regulation, CD107 release, and mutual cell elimination in vitro. Conversely, normal fibroblasts and myoblasts were not affected while normal HUVEC cells promoted CD32A down-regulation. CD32A-CR T cell activity was not inhibited by human IgGs or human serum, but; it was rather enhanced by cetuximab antibody. RNAseq analysis of sensitive vs resistant BC cells identified a fingerprint of 42 genes predicting the sensitivity of BC cells to CD32A-CR T cells and their association with favorable prognostic significance in advanced BC patients. Our data also identify ICAM 1 as a major regulator of CD32A-CR T cell-mediated cytotoxicity. Finally, CD32A-CR T cell administration protected immunodeficient mice from subcutaneous growth of MDA-MB-468 cells in the absence of tumor-specific antibodies. These data indicate that CD32A-CR can be utilized for the identification of (1) cell surface CD32A ligand(s); (2) rational therapeutic strategies to target BC; and (3) novel transcriptomic signatures prognostically relevant for advanced BC patients.

2001 ◽  
Vol 276 (50) ◽  
pp. 47320-47328 ◽  
Author(s):  
Jennifer Buslepp ◽  
Rui Zhao ◽  
Debora Donnini ◽  
Douglas Loftus ◽  
Mohamed Saad ◽  
...  

Recognition of virally infected cells by CD8+T cells requires differentiation between self and nonself peptide-class I major histocompatibility complexes (pMHC). Recognition of foreign pMHC by host T cells is a major factor in the rejection of transplanted organs from the same species (allotransplant) or different species (xenotransplant). AHIII12.2 is a murine T cell clone that recognizes the xenogeneic (human) class I MHC HLA-A2.1 molecule (A2) and the syngeneic murine class I MHC H-2 Dbmolecule (Db). Recognition of both A2 and Dbare peptide-dependent, and the sequences of the peptides recognized have been determined. Alterations in the antigenic peptides bound to A2 cause large changes in AHIII12.2 T cell responsiveness. Crystal structures of three representative peptides (agonist, null, and antagonist) bound to A2 partially explain the changes in AHIII12.2 responsiveness. Using class I pMHC octamers, a strong correlation is seen between T cell activity and the affinity of pMHC complexes for the T cell receptor. However, contrary to previous studies, we see similar half-lives for the pMHC multimers bound to the AHIII12.2 cell surface.


2019 ◽  
Vol 4 (40) ◽  
pp. eaaw9159 ◽  
Author(s):  
Yu Si ◽  
Simon F. Merz ◽  
Philipp Jansen ◽  
Baoxiao Wang ◽  
Kirsten Bruderek ◽  
...  

A high intratumoral frequency of neutrophils is associated with poor clinical outcome in most cancer entities. It is hypothesized that immunosuppressive MDSC (myeloid-derived suppressor cell) activity of neutrophils against tumor-reactive T cells contributes to this effect. However, direct evidence for such activity in situ is lacking. Here, we used whole-mount labeling and clearing, three-dimensional (3D) light sheet microscopy and digital image reconstruction supplemented by 2D multiparameter immunofluorescence, for in situ analyses of potential MDSC–T cell interactions in primary human head and neck cancer tissue. We could identify intratumoral hotspots of high polymorphonuclear (PMN)–MDSC and T cell colocalization. In these areas, the expression of effector molecules Granzyme B and Ki67 in T cells was strongly reduced, in particular for T cells that were in close proximity or physically engaged with PMN-MDSC, which expressed LOX-1 and arginase I. Patients with cancer with evidence for strong down-regulation of T cell function by PMN-MDSC had significantly impaired survival. In summary, our approach identifies areas of clinically relevant functional interaction between MDSC and T cells in human cancer tissue and may help to inform patient selection in future combination immunotherapies.


2021 ◽  
Author(s):  
Pan Liao ◽  
Ying Wang ◽  
Lixia Sun ◽  
Hongpeng Yue

Abstract Background: Lysosomal protein placenta-specific 8 (PLAC8) with abundant cysteine, also referred to as onzin, participates in numerous cancers, and its effect is greatly determined by the cellular and tumor microenvironment (TME). Ourstudy focused on investigating the prognostic significance of PLAC8 and examined the association between PLAC8, immune infiltration, and T cells function in multiple malignancies comprehensively, particularly in breast cancer (BRCA).Methods: PLAC8 expression in various malignancies was analyzed using TIMER. PrognoScan, Kaplan-Meier Plotter, and GEPIA2 were utilized to explore the significance of PLAC8 in prognostic prediction. Moreover, PLAC8 functions were systematically analyzed through cancerSEA. Additionally, TISIDB, TIMER, and GEPIA2 were also employed for analyzing the associations among PLAC8, immune infiltration, related gene marker sets, and clinical stages. Finally, PLAC8 and its co-expressed genes biological process and KEGG were analyzed. Results: PLAC8 expression decreased in most malignancies and was related to poor prognosis in BRCA. PLAC8 significantly affected the survival of BRCA with ER status – array, PR status – IHC, HER2 status – array, Intrinsic subtype, Grade, and Pietenpol subtype. Increased PLAC8 expression positively correlated with the increased immune infiltration levels within immune cells and many functional T cells (such as exhausted T cells). In BRCA cells, PLAC8 functional phenotypesshowed a negative correlation with invasion, metastasis, apoptosis, DNA damage, and DNA repair. Besides, PD-1, TIM-3, TIGIT, LAG3, and GZMB, critical genes of exhausted T cells, interacted with PLAC8. Further analysis indicated that PLAC8 was related to T cell activation, proliferation and adhesion of leukocytes,adaptive immune response, cell adhesion molecules (CAMs), cytotoxicity-mediated by natural killer cells, and the NF-kappa B signal transduction pathway.Conclusion:PLAC8 is a prognostic indicator in pan-cancers, especially BRCA. Elevated PLAC8 level could significantly enhance immune infiltration in CD4+ T cells, CD8+ T cells, and functional T cells. Additionally, PLAC8 was tightly associatedwith T cell exhaustion which possibly enhances the latterwithin BRCA. PLAC8 expression determination might help in prognosis, and modulation of PLAC8level within exhausted T cells, a novel approach for optimizing the therapeutic effect of immunotherapy on BRCA cases.


2020 ◽  
Vol 8 (2) ◽  
pp. e001010
Author(s):  
Tal Kan ◽  
Erik Feldman ◽  
Michael Timaner ◽  
Ziv Raviv ◽  
Shai Shen-Orr ◽  
...  

BackgroundImmunomodulatory agents that induce antitumor immunity have great potential for treatment of cancer. We have previously shown that interleukin (IL)-31, a proinflammatory cytokine from the IL-6 family, acts as an antiangiogenic agent. Here, we characterize the immunomodulatory effect of IL-31 in breast cancer.MethodsIn vivo breast carcinoma models including EMT6 and PyMT cell lines were used to analyze the effect of IL-31 on the composition of various immune cells in the tumor microenvironment using high-throughput flow cytometry. In vitro studies using isolated cytotoxic T cells, CD4+ T cells, myeloid-derived suppressor cells (MDSCs) and macrophages were carried out to study IL-31 immunological activity. The generation of recombinant IL-31 bound to IgG backbone was used to test IL-31 therapeutic activity.ResultsThe growth rate of IL-31-expressing breast carcinomas is decreased in comparison with control tumors due, in part, to antitumor immunomodulation. Specifically, cytotoxic T cell activity is increased, whereas the levels of CD4+ T cells, MDSCs, and tumor-associated macrophages are decreased in IL-31-expressing tumors. These cellular changes are accompanied by a cytokine profile associated with antitumor immunity. In vitro, IL-31 directly inhibits CD4+ Th0 cell proliferation, and the expression of Th2 canonical factors GATA3 and IL-4. It also promotes CD8+ T cell activation through inhibition of MDSC activity and motility. Clinically, in agreement with the mouse data, alterations in immune cell composition in human breast cancer biopsies were found to correlate with high expression of IL-31 receptor A (IL-31Ra) . Furthermore, high coexpression of IL-31Ra, IL-2 and IL-4 in tumors correlates with increased survival. Lastly, to study the therapeutic potential of IL-31, a recombinant murine IL-31 molecule was fused to IgG via a linker region (IL-31-L-IgG). This IL-31-L-IgG therapy demonstrates antitumor therapeutic activity in a murine breast carcinoma model.ConclusionsOur findings demonstrate that IL-31 induces antitumor immunity, highlighting its potential utility as a therapeutic immunomodulatory agent.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 384-392 ◽  
Author(s):  
Volker Kunzmann ◽  
Eva Bauer ◽  
Juliane Feurle ◽  
Florian Weißinger, Hans-Peter Tony ◽  
Martin Wilhelm

Abstract Bisphosphonates are well-known inhibitors of osteoclastic bone resorption, but recent clinical reports support the possibility of direct or indirect antitumor effects by these compounds. Because bisphosphonates share structural homologies with recently identified γδ T-cell ligands, we examined the stimulatory capacity of bisphosphonates to γδ T cells and determined whether γδ T-cell stimulation by bisphosphonates could be exploited to generate antiplasma cell activity in multiple myeloma (MM). All tested aminobisphosphonates (alendronate, ibandronate, and pamidronate) induced significant expansion of γδ T cells (Vγ9Vδ2 subset) in peripheral blood mononuclear cell cultures of healthy donors at clinically relevant concentrations (half-maximal activity, 0.9-4 μmol/L). The proliferative response of γδ T cells to aminobisphosphonates was IL-2 dependent, whereas activation of γδ T cells (up-regulation of CD25 and CD69) occurred in the absence of exogenous cytokines. Pamidronate-activated γδ T cells produced cytokines (ie, interferon [IFN]-γ) and exhibited specific cytotoxicity against lymphoma (Daudi) and myeloma cell lines (RPMI 8226, U266). Pamidronate-treated bone marrow (BM) cultures of 24 patients with MM showed significantly reduced plasma cell survival compared with untreated cultures, especially in cultures in which activation of BM-γδ T cells was evident (14 of 24 patients with MM). γδ T-cell depletion from BM cultures completely abrogated the cytoreductive effect on myeloma cells in 2 of 3 tested patients with MM. These results show that aminobisphosphonates stimulating γδ T cells have pronounced effects on the immune system, which might contribute to the antitumor effects of these drugs.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 384-392 ◽  
Author(s):  
Volker Kunzmann ◽  
Eva Bauer ◽  
Juliane Feurle ◽  
Florian Weißinger, Hans-Peter Tony ◽  
Martin Wilhelm

Bisphosphonates are well-known inhibitors of osteoclastic bone resorption, but recent clinical reports support the possibility of direct or indirect antitumor effects by these compounds. Because bisphosphonates share structural homologies with recently identified γδ T-cell ligands, we examined the stimulatory capacity of bisphosphonates to γδ T cells and determined whether γδ T-cell stimulation by bisphosphonates could be exploited to generate antiplasma cell activity in multiple myeloma (MM). All tested aminobisphosphonates (alendronate, ibandronate, and pamidronate) induced significant expansion of γδ T cells (Vγ9Vδ2 subset) in peripheral blood mononuclear cell cultures of healthy donors at clinically relevant concentrations (half-maximal activity, 0.9-4 μmol/L). The proliferative response of γδ T cells to aminobisphosphonates was IL-2 dependent, whereas activation of γδ T cells (up-regulation of CD25 and CD69) occurred in the absence of exogenous cytokines. Pamidronate-activated γδ T cells produced cytokines (ie, interferon [IFN]-γ) and exhibited specific cytotoxicity against lymphoma (Daudi) and myeloma cell lines (RPMI 8226, U266). Pamidronate-treated bone marrow (BM) cultures of 24 patients with MM showed significantly reduced plasma cell survival compared with untreated cultures, especially in cultures in which activation of BM-γδ T cells was evident (14 of 24 patients with MM). γδ T-cell depletion from BM cultures completely abrogated the cytoreductive effect on myeloma cells in 2 of 3 tested patients with MM. These results show that aminobisphosphonates stimulating γδ T cells have pronounced effects on the immune system, which might contribute to the antitumor effects of these drugs.


Oncogene ◽  
2021 ◽  
Author(s):  
Yufan Qiu ◽  
Yi Yang ◽  
Riyao Yang ◽  
Chunxiao Liu ◽  
Jung-Mao Hsu ◽  
...  

AbstractProgrammed cell death 1 (PD-1) is widely expressed in tumor-infiltrating lymphocytes (TILs) of triple-negative breast cancer (TNBC). As a dominant inhibitory immune checkpoint (ICP) receptor, cell surface PD-1 is well-known to transduce negative signaling of effector T cell activity during cell–cell contact. However, despite its well-documented inhibitory effects, higher PD-1 expression in TILs is significantly associated with longer survival in TNBC patients. This phenomenon raises an interesting question whether PD-1 harbors positive activity to enhance anti-tumor immunity. Here, we show that PD-1 is secreted in an exosomal form by activated T cells and can remotely interact with either cell surface or exosomal programmed death-ligand 1 (PD-L1), induce PD-L1 internalization via clathrin-mediated endocytosis, and thereby prevent subsequent cellular PD-L1: PD-1 interaction, restoring tumor surveillance through attenuating PD-L1-induced suppression of tumor-specific cytotoxic T cell activity. Our results, through revealing an anti-PD-L1 function of exosomal PD-1, provide a positive role to enhance cytotoxic T cell activity and a potential therapeutic strategy of modifying the exosome surface with membrane-bound inhibitory ICP receptors to attenuate the suppressive tumor immune microenvironment.


2019 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Alice Bayiyana ◽  
Samuel Okurut ◽  
Rose Nabatanzi ◽  
Godfrey Zziwa ◽  
David R. Boulware ◽  
...  

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.


Author(s):  
Shannon L. McArdel ◽  
Anne-Sophie Dugast ◽  
Maegan E. Hoover ◽  
Arjun Bollampalli ◽  
Enping Hong ◽  
...  

AbstractRecombinant agonists that activate co-stimulatory and cytokine receptors have shown limited clinical anticancer utility, potentially due to narrow therapeutic windows, the need for coordinated activation of co-stimulatory and cytokine pathways and the failure of agonistic antibodies to recapitulate signaling by endogenous ligands. RTX-240 is a genetically engineered red blood cell expressing 4-1BBL and IL-15/IL-15Rα fusion (IL-15TP). RTX-240 is designed to potently and simultaneously stimulate the 4-1BB and IL-15 pathways, thereby activating and expanding T cells and NK cells, while potentially offering an improved safety profile through restricted biodistribution. We assessed the ability of RTX-240 to expand and activate T cells and NK cells and evaluated the in vivo efficacy, pharmacodynamics and tolerability using murine models. Treatment of PBMCs with RTX-240 induced T cell and NK cell activation and proliferation. In vivo studies using mRBC-240, a mouse surrogate for RTX-240, revealed biodistribution predominantly to the red pulp of the spleen, leading to CD8 + T cell and NK cell expansion. mRBC-240 was efficacious in a B16-F10 melanoma model and led to increased NK cell infiltration into the lungs. mRBC-240 significantly inhibited CT26 tumor growth, in association with an increase in tumor-infiltrating proliferating and cytotoxic CD8 + T cells. mRBC-240 was tolerated and showed no evidence of hepatic injury at the highest feasible dose, compared with a 4-1BB agonistic antibody. RTX-240 promotes T cell and NK cell activity in preclinical models and shows efficacy and an improved safety profile. Based on these data, RTX-240 is now being evaluated in a clinical trial.


2021 ◽  
Vol 9 (5) ◽  
pp. e001925
Author(s):  
Shujuan Zhou ◽  
Fanyan Meng ◽  
Shiyao Du ◽  
Hanqing Qian ◽  
Naiqing Ding ◽  
...  

BackgroundPoor infiltration and limited activation of transferred T cells are fundamental factors impeding the development of adoptive cell immunotherapy in solid tumors. A tumor-penetrating peptide iRGD has been widely used to deliver drugs deep into tumor tissues. CD3-targeting bispecific antibodies represent a promising immunotherapy which recruits and activates T cells.MethodsT-cell penetration was demonstrated in tumor spheroids using confocal microscope, and in xenografted tumors by histology and in vivo real-time fluorescence imaging. Activation and cytotoxicity of T cells were assessed by flow cytometry and confocal microscope. Bioluminescence imaging was used to evaluate in vivo antitumor effects, and transmission electron microscopy was used for mechanistic studies.ResultsWe generated a novel bifunctional agent iRGD-anti-CD3 which could immobilize iRGD on the surface of T cells through CD3 engaging. We found that iRGD-anti-CD3 modification not only facilitated T-cell infiltration in 3D tumor spheroids and xenografted tumor nodules but also induced T-cell activation and cytotoxicity against target cancer cells. T cells modified with iRGD-anti-CD3 significantly inhibited tumor growth and prolonged survival in several xenograft mouse models, which was further enhanced by the combination of programmed cell death protein 1 (PD-1) blockade. Mechanistic studies revealed that iRGD-anti-CD3 initiated a transport pathway called vesiculovacuolar organelles in the endothelial cytoplasm to promote T-cell extravasation.ConclusionAltogether, we show that iRGD-anti-CD3 modification is an innovative and bifunctional strategy to overcome major bottlenecks in adoptive cell therapy. Moreover, we demonstrate that combination with PD-1 blockade can further improve antitumor efficacy of iRGD-anti-CD3-modified T cells.


Sign in / Sign up

Export Citation Format

Share Document