scholarly journals Systemic influences of mammary cancer on monocytes in mice

2021 ◽  
Author(s):  
Amy Robinson ◽  
Matthew Burgess ◽  
Sheila Webb ◽  
Pieter Louwe ◽  
Zhengyu Ouyang ◽  
...  

There is a growing body of evidence that cancer causes systemic changes. These influences are most evident in the bone marrow and blood, particularly the myeloid compartment. Here we show using mouse models of breast cancer caused by the mammary epithelial expression of the Polyoma middle T antigen that there is an increase in the number of circulating and splenic monocytes. In the circulation, cancer does not affect ratios of classical to non-classical populations monocytes nor their half-lives. Single cell RNA sequencing also indicates that cancer does not induce any new monocyte populations. In the bone marrow cancer does not change monocytic progenitor number is unaffected but the proliferation rate of monocytes is higher thus providing an explanation for expansion in the circulating number. Deep RNA sequencing of these monocytic populations reveals cancer causes changes in the classical monocyte compartment with changes evident in bone marrow monocytes but more in the blood suggesting influences in both compartments. Down regulation of interferon type 1 signalling and antigen presentation were the most prominent. Consistent with this analysis down regulated genes are enriched with STAT1/STAT2 binding sites in their promoter, transcription factors required for type 1 interferon signalling. However, these transcriptome changes in mice did not replicate those found in patients with breast cancer. Consequently, mouse models of cancer may be insufficient to study the systemic influences of human cancer.

2011 ◽  
Vol 32 (10) ◽  
pp. 1441-1449 ◽  
Author(s):  
Nune Markosyan ◽  
Edward P. Chen ◽  
Victoire N. Ndong ◽  
Yubing Yao ◽  
Christopher J. Sterner ◽  
...  

2018 ◽  
Author(s):  
Jonathan P Rennhack ◽  
Matthew Swiatnicki ◽  
Yueqi Zhang ◽  
Caralynn Li ◽  
Evan Bylett ◽  
...  

AbstractMouse models have an essential role in cancer research, yet little is known about how various models resemble human cancer at a genomic level. However, the shared genomic alterations in each model and corresponding human cancer are critical for translating findings in mice to the clinic. We have completed whole genome sequencing and transcriptome profiling of two widely used mouse models of breast cancer, MMTV-Neu and MMTV-PyMT. This genomic information was integrated with phenotypic data and CRISPR/Cas9 studies to understand the impact of key events on tumor biology. Despite the engineered initiating transgenic event in these mouse models, they contain similar copy number alterations, single nucleotide variants, and translocation events as human breast cancer. Through integrative in vitro and in vivo studies, we identified copy number alterations in key extracellular matrix proteins including Collagen 1 Type 1 alpha 1 (Col1a1) and Chondroadherin (CHAD) that drive metastasis in these mouse models. Importantly this amplification is also found in 25% of HER2+ human breast cancer and is associated with increased metastasis. In addition to copy number alterations, we observed a propensity of the tumors to modulate tyrosine kinase mediated signaling through mutation of phosphatases. Specifically, we found that 81% of MMTV-PyMT tumors have a mutation in the EGFR regulatory phosphatase, PTPRH. Mutation in PTPRH led to increased phospho-EGFR levels and decreased latency. Moreover, PTPRH mutations increased response to EGFR kinase inhibitors. Analogous PTPRH mutations are present in lung cancer patients and together this data suggests that a previously unidentified population of human lung cancer patients may respond to EGFR targeted therapy. These findings underscore the importance of understanding the complete genomic landscape of a mouse model and illustrate the utility this has in understanding human cancers.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A783-A783
Author(s):  
Yanrui Song ◽  
Jessie Wang ◽  
Likun Zhang ◽  
Annie An ◽  
Henry Li ◽  
...  

BackgroundBreast cancer is a complex disease which is defined by an intrinsic heterogeneity at the histopathological and molecular levels, as well as in response to therapy. It remains the second leading cause of cancer death among women worldwide despite advances in screening, detection and new therapeutic options. Therefore, it is important to establish relevant preclinical mouse models to study new therapeutics and tumor biology. Genetically engineered mouse models (GEMMs) have been developed in order to understand the molecular, biochemical and cellular functions of oncogenes or tumor suppressor genes. However, the application of GEMMs is constrained due to the spontaneous nature of tumor onset and progression and high cost of breeding. Homograft tumor models, which are derived from and retain the histopathological and molecular features of GEMMs, can be used as faithful surrogates of human tumors.MethodsWe generated a series of homograft tumor models from GEMMs overexpressing human epidermal growth factor receptor 2 (HER2, also known as ERBB2) or polyomavirus middle T antigen (PyMT) driven by the mouse mammary tumor virus (MMTV) promoter, or Simian Virus 40 T-antigen (SV40 Tag) under the promotion of the rat prostate steroid binding protein (C3(1)), which are commonly used GEMMs in preclinical breast cancer research.1 2 Models were generated by transplanting the mammary tumors into donor animals. Furthermore, we characterized the homograft tumors through histopathological analysis, immunohistochemical analysis, and immune profiling, as well as immunotherapeutic, cytotoxic and targeted therapy.ResultsNine breast cancer homograft models were developed from MMTV-ERBB2, MMTV-PyMT and C3(1)-Tag GEMMs, including six hormone receptor negative and HER2 positive models (mBR9013, mBR9026, mBR9027, mBR9028, mBR9029, mBR9030), one hormone receptor positive and HER2 negative model (mBR6174) and two triple negative models (mBR6004, mBR9014). Immune profiling of six models showed enriched macrophage infiltration in the tumor microenvironment. Immunotherapy treatment with anti-mPD-1 and anti-mCTLA-4 produced tumor growth inhibition (TGI) of 98% and 110%, respectively, in the triple negative model mBR9014, accompanied by tumor regression. HER2 targeted treatment with lapatinib produced robust response with TGI ranging from 48% to 97% in one HER2 negative and two HER2 positive models. Varying response to the cytotoxic treatments was observed among different models, with cisplatin producing robust response of TGI over 80% in all five of the tested models.ConclusionsWe have generated and characterized a series of mouse breast cancer homograft models from GEMMs to facilitate both mechanistic investigation and preclinical testing of novel therapeutics.Ethics ApprovalAnimal experiments were conducted in accordance with animal welfare law, approved by local authorities, and in accordance with the ethical guidelines of CrownBio (Taicang).ReferencesSakamoto K, Schmidt JW, Wagner K-U. Mouse models of breast cancer. Methods Mol Biol 2015;1267:47–71.Usary J, Darr DB, Pfefferle AD, et al. Overview of genetically engineered mouse models of distinct breast cancer subtypes. Curr Protoc Pharmacol 2016;72:14.38.1–14.38.11.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kirti Kaul ◽  
Martin Benej ◽  
Sanjay Mishra ◽  
Dinesh K. Ahirwar ◽  
Marshleen Yadav ◽  
...  

Slit2 exerts antitumor effects in various cancers; however, the underlying mechanism, especially its role in regulating the immune, especially in the bone marrow niche, system is still unknown. Elucidating the behavior of macrophages in tumor progression can potentially improve immunotherapy. Using a spontaneous mammary tumor virus promoter-polyoma middle T antigen (PyMT) breast cancer mouse model, we observed that Slit2 increased the abundance of antitumor M1 macrophage in the bone marrow upon differentiation in vitro. Moreover, myeloablated PyMT mice injected with Slit2-treated bone marrow allografts showed a marked reduction in tumor growth, with enhanced recruitment of M1 macrophage in their tumor stroma. Mechanistic studies revealed that Slit2 significantly enhanced glycolysis and reduced fatty acid oxidation in bone marrow-derived macrophages (BMDMs). Slit2 treatment also altered mitochondrial respiration metabolites in macrophages isolated from healthy human blood that were treated with plasma from breast cancer patients. Overall, this study, for the first time, shows that Slit2 increases BMDM polarization toward antitumor phenotype by modulating immune-metabolism. Furthermore, this study provides evidence that soluble Slit2 could be developed as novel therapeutic strategy to enhance antitumor immune response.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Syn Kok Yeo ◽  
Xiaoting Zhu ◽  
Takako Okamoto ◽  
Mingang Hao ◽  
Cailian Wang ◽  
...  

Breast cancer stem cells (BCSCs) contribute to intra-tumoral heterogeneity and therapeutic resistance. However, the binary concept of universal BCSCs co-existing with bulk tumor cells is over-simplified. Through single-cell RNA-sequencing, we found that Neu, PyMT and BRCA1-null mammary tumors each corresponded to a spectrum of minimally overlapping cell differentiation states without a universal BCSC population. Instead, our analyses revealed that these tumors contained distinct lineage-specific tumor propagating cells (TPCs) and this is reflective of the self-sustaining capabilities of lineage-specific stem/progenitor cells in the mammary epithelial hierarchy. By understanding the respective tumor hierarchies, we were able to identify CD14 as a TPC marker in the Neu tumor. Additionally, single-cell breast cancer subtype stratification revealed the co-existence of multiple breast cancer subtypes within tumors. Collectively, our findings emphasize the need to account for lineage-specific TPCs and the hierarchical composition within breast tumors, as these heterogenous sub-populations can have differential therapeutic susceptibilities.


2017 ◽  
Vol 17 (3) ◽  
pp. 755-761 ◽  
Author(s):  
Maryam Burney ◽  
Lata Mathew ◽  
Anjali Gaikwad ◽  
Elizabeth K. Nugent ◽  
Anneliese O. Gonzalez ◽  
...  

Objective: To determine the activity of fucoidan from Undaria pinnatifida (UPF) and Fucus vesiculosus (FVF) when given in combination of chemotherapy drugs using selected human breast or ovarian cancer orthotopic mouse models. Methods: Mice were inoculated with 1 × 106 cells of TOV-112d, MCF-7, or ZR-75 subcutaneously or SKOV3-GFP-Luc intraperitoneally on day 0. MCF-7 and ZR-75 mice were administered with estradiol valerate 2 mg/kg in 0.2 mL castor oil subcutaneously two days prior to cell inoculation. Mice were randomized to one of six arms (N = 10/arm) paclitaxel, UPF/paclitaxel, FVF/paclitaxel, tamoxifen, UPF/tamoxifen, or FVF/tamoxifen. Tumors were measured three times per week for 28 days. Results: Improved activity was observed with UPF or FVF in combination with tamoxifen in both the MCF-7 and ZR-75D breast cancer mouse models. Decreased activity of paclitaxel was observed when given in combination with UPF or FVF in both breast cancer mouse models. The combination of FVF/tamoxifen in the TOV-112d ovarian cancer mouse model had improved activity but no there was difference observed with the UPF/tamoxifen in either ovarian cancer mouse model. No difference was observed with combination of UPF or FVF with paclitaxel in human ovarian cancer SKOV3 or TOV-112d orthotopic mouse models. Conclusion: This study did confirm that UPF/FVF in combination with tamoxifen did not decrease tamoxifen activity in both breast and ovarian cancer, with some potential to improve activity compared to tamoxifen alone in breast cancers. Previous in vitro studies had suggested UPF and FVF had overall synergistic activity with paclitaxel; however, in the current in vivo human cancer mouse model studies there was no change in paclitaxel activity when given in combination with UPF or FVF in either of the two human ovarian cancer models. Furthermore, this study demonstrated that UPF or FVF given in combination with paclitaxel had a potential antagonistic effect in breast cancer models. Additional studies are warranted to delineate mechanisms contributing to variation in the in vivo activity when given in combination with paclitaxel. As a first step, a clinical pharmacokinetic study evaluating impact of FVF/UPF given in combination with chemotherapy in patients with solid tumors is underway.


Sign in / Sign up

Export Citation Format

Share Document