scholarly journals Structural development of amyloid precursors in insulin B chain and the inhibition effect by fibrinogen

2021 ◽  
Author(s):  
Naoki Yamamoto ◽  
Rintaro Inoue ◽  
Yoshiteru Makino ◽  
Naoya Shibayama ◽  
Akira Naito ◽  
...  

Amyloid fibrils are abnormal protein aggregates that relate to a large number of amyloidoses and neurodegenerative diseases. The oligomeric precursors, or prefibrillar intermediates, which emerge prior to the amyloid fibril formation, have been known to play a crucial role for the formation. Therefore, it is essential to elucidate the mechanisms of the structural development of the prefibrillar intermediates and ways to prevent its fibril formation. An insulin-derived peptide, insulin B chain, has been known for its stable accumulation of the prefibrillar intermediates. In this study, structural development of B chain prefibrillar intermediates was monitored by transmission electron microscopy and small-angle X-ray scattering combined with size exclusion chromatography and solid-state NMR spectroscopy to elucidate the stability and secondary structure. We further tracked its inhibition process by fibrinogen (Fg), which has been known to effectively prevent the amyloid fibril formation of B chain. We demonstrated that prefibrillar intermediates are wavy structures with low β-sheet content, growing in a multistep manner toward the nucleation for the amyloid fibril formation. In the presence of Fg, the formation of the prefibrillar intermediates slowed down by forming specific complexes. These observations suggest that the prefibrillar intermediates serve as reaction fields for the nucleation and its propagation for the amyloid fibril formation, whereas the inhibition of prefibrillar intermediate elongation by Fg is the significant factor to suppress the fibril formation. We propose that the obtained molecular picture could be a general inhibition mechanism of the amyloid fibril formation by the inhibitors.

2021 ◽  
Vol 23 (1) ◽  
pp. 391
Author(s):  
Elisabete Ferreira ◽  
Zaida L. Almeida ◽  
Pedro F. Cruz ◽  
Marta Silva e Sousa ◽  
Paula Veríssimo ◽  
...  

Several degenerative amyloid diseases, with no fully effective treatment, affect millions of people worldwide. These pathologies—amyloidoses—are known to be associated with the formation of ordered protein aggregates and highly stable and insoluble amyloid fibrils, which are deposited in multiple tissues and organs. The disruption of preformed amyloid aggregates and fibrils is one possible therapeutic strategy against amyloidosis; however, only a few compounds have been identified as possible fibril disruptors in vivo to date. To properly identify chemical compounds as potential fibril disruptors, a reliable, fast, and economic screening protocol must be developed. For this purpose, three amyloid fibril formation protocols using transthyretin (TTR), a plasma protein involved in several amyloidoses, were studied using thioflavin-T fluorescence assays, circular dichroism (CD), turbidity, dynamic light scattering (DLS), and transmission electron microscopy (TEM), in order to characterize and select the most appropriate fibril formation protocol. Saturation transfer difference nuclear magnetic resonance spectroscopy (STD NMR) was successfully used to study the interaction of doxycycline, a known amyloid fibril disruptor, with preformed wild-type TTR (TTRwt) aggregates and fibrils. DLS and TEM were also used to characterize the effect of doxycycline on TTRwt amyloid species disaggregation. A comparison of the TTR amyloid morphology formed in different experimental conditions is also presented.


2021 ◽  
Vol 118 (3) ◽  
pp. e2014442118
Author(s):  
Nir Salinas ◽  
Einav Tayeb-Fligelman ◽  
Massimo D. Sammito ◽  
Daniel Bloch ◽  
Raz Jelinek ◽  
...  

Antimicrobial activity is being increasingly linked to amyloid fibril formation, suggesting physiological roles for some human amyloids, which have historically been viewed as strictly pathological agents. This work reports on formation of functional cross-α amyloid fibrils of the amphibian antimicrobial peptide uperin 3.5 at atomic resolution, an architecture initially discovered in the bacterial PSMα3 cytotoxin. The fibrils of uperin 3.5 and PSMα3 comprised antiparallel and parallel helical sheets, respectively, recapitulating properties of β-sheets. Uperin 3.5 demonstrated chameleon properties of a secondary structure switch, forming mostly cross-β fibrils in the absence of lipids. Uperin 3.5 helical fibril formation was largely induced by, and formed on, bacterial cells or membrane mimetics, and led to membrane damage and cell death. These findings suggest a regulation mechanism, which includes storage of inactive peptides as well as environmentally induced activation of uperin 3.5, via chameleon cross-α/β amyloid fibrils.


Author(s):  
Alma Jahic Mujkic ◽  
Samra Hasanbasic ◽  
Magda Tušek Žnidarič ◽  
Selma Berbic ◽  
Eva Zerovnik

We compare the effect on amyloid fibril formation by two homologous proteins from the family of cystatins, human stefin B (stB) and cystatin C (cysC) in presence of 3 polyphenols: curcumin, resveratrol and quercetin and 2 non-phenolic anti-oxidants: vitamin C (VitC) and N-acetyl cystein (NAC). Some of the experimental data have already been presented, here we compare, further discuss and highlight the results. The amyloid fibril formation was followed by ThT fluorescence and transmission electron microscopy. Inhibitory effects on amyloid fibrillation reaction depended on anti-oxidant class and concentration. The fact that different effect of polyphenols was observed with the two cystatins; Cur acted inhibitory on stB but not on cysC fibril formation, could be explained if the 3 polyphenols would not bind to the same binding site in the fibrils core. Other differences are pointed out and discussed. Synergistic effects of VitC and chosen polyphenols on amyloid fibrilllation of human stB have been explored and are reported here for the first time.


2019 ◽  
Vol 20 (22) ◽  
pp. 5558
Author(s):  
Hassan Ramshini ◽  
Reza Tayebee ◽  
Alessandra Bigi ◽  
Francesco Bemporad ◽  
Cristina Cecchi ◽  
...  

Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as –F and –NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as –OH, –OCH3, and –CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.


Biomolecules ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 65 ◽  
Author(s):  
Sandi Brudar ◽  
Barbara Hribar-Lee

Amyloid fibrils, highly ordered protein aggregates, play an important role in the onset of several neurological disorders. Many studies have assessed amyloid fibril formation under specific solution conditions, but they all lack an important phenomena in biological solutions—buffer specific effects. We have focused on the formation of hen egg-white lysozyme (HEWL) fibrils in aqueous solutions of different buffers in both acidic and basic pH range. By means of UV-Vis spectroscopy, fluorescence measurements and CD spectroscopy, we have managed to show that fibrillization of HEWL is affected by buffer identity (glycine, TRIS, phosphate, KCl-HCl, cacodylate, HEPES, acetate), solution pH, sample incubation (agitated vs. static) and added excipients (NaCl and PEG). HEWL only forms amyloid fibrils at pH = 2.0 under agitated conditions in glycine and KCl-HCl buffers of high enough ionic strength. Phosphate buffer on the other hand stabilizes the HEWL molecules. Similar stabilization effect was achieved by addition of PEG12000 molecules to the solution.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Samra Hasanbašić ◽  
Alma Jahić ◽  
Selma Berbić ◽  
Magda Tušek Žnidarič ◽  
Eva Žerovnik

Amyloid fibril formation is a shared property of all proteins; therefore, model proteins can be used to study this process. We measured protein aggregation of the model amyloid-forming protein stefin B in the presence and absence of several antioxidants. Amyloid fibril formation by stefin B was routinely induced at pH 5 and 10% TFE, at room temperature. The effects of antioxidants NAC, vitamin C, vitamin E, and the three polyphenols resveratrol, quercetin, and curcumin on the kinetics of fibril formation were followed using ThT fluorescence. Concomitantly, the morphology and amount of the aggregates and fibrils were checked by transmission electron microscopy (TEM). The concentration of the antioxidants was varied, and it was observed that different modes of action apply at low or high concentrations relative to the binding constant. In order to obtain more insight into the possible mode of binding, docking of NAC, vitamin C, and all three polyphenols was done to the monomeric form of stefin B.


Nanoscale ◽  
2020 ◽  
Vol 12 (32) ◽  
pp. 16805-16818
Author(s):  
Aslam Uddin ◽  
Bibhisan Roy ◽  
Gregor P. Jose ◽  
Sk Saddam Hossain ◽  
Partha Hazra

Our study demonstrates that organic dots can be used for the imaging and early stage detection of amyloid fibril formation and the modulation of amyloid formation pathways.


Author(s):  
Kentaro Noi ◽  
Kichitaro Nakajima ◽  
Keiichi Yamaguchi ◽  
Masatomo So ◽  
Kensuke Ikenaka ◽  
...  

Abstract Formation of amyloid fibrils of various amyloidogenic proteins is dramatically enhanced by ultrasound irradiation. For applying this phenomenon to the study of protein aggregation science and diagnosis of neurodegenerative diseases, a multichannel ultrasound irradiation system with individually adjustable ultrasound-irradiation conditions is necessary. Here, we develop a sonochemical reaction system, where an ultrasonic transducer is placed in each well of a 96-well microplate to perform ultrasonic irradiation of sample solutions under various conditions with high reproducibility, and applied it for studying amyloid-fibril formation of amyloid $\beta$, $\alpha$-synuclein, $\beta$2-microglobulin, and lysozyme. The results clearly show that our instrument is superior to conventional shaking method in terms of degree of acceleration and reproducibility of fibril formation reaction. The acceleration degree is controllable by controlling the driving voltage applied to each transducer. We have thus succeeded in developing a useful tool for the study of amyloid fibril formation in various proteins.


2021 ◽  
Author(s):  
Jonathan Stoeber ◽  
Jonathan K Williams ◽  
Prabhas V. Moghe ◽  
Jean Baum

α-Synuclein (αS) is an intrinsically disordered protein (IDP) that aggregates into amyloid fibrils during the progression of Parkinson's Disease and other synucleinopathies. The N-terminal domain (residues 1-60) is now understood to play a critical role in the initial nucleation of aggregation, as well as a pivotal role in the monomer-fibril interaction underlying amyloid seeding. Here we report on the interaction between αS and the polyphenol tannic acid (TA), where a combination of solution NMR, atomic force microscopy (AFM), and ThT assays have identified that TA targets the αS N-terminal domain to inhibit amyloid fibril formation in a pH dependent manner. This work highlights the importance of targeting the N-terminus of αS to arrest fibril formation, and suggests the importance of including polyphenolic moieties in future amyloid inhibitors.


Author(s):  
PM Seidler ◽  
DR Boyer ◽  
MR Sawaya ◽  
P Ge ◽  
WS Shin ◽  
...  

AbstractEGCG, the most abundant favanol in green tea, is one of the few natural compounds known to inhibit amyloid fibril formation of proteins associated with neurodegeneration, and to disaggregate amyloid fibrils. Little is known of the mechanism of molecular action of EGCG, or how it or other small molecules interact with amyloid fibrils. Here we present a 3.9 Å resolution cryoEM structure that reveals the site of EGCG binding to Alzheimer’s disease (AD) brain-derived tau fibrils. The structure suggests that EGCG disaggregates fibrils of AD-tau by wedging into a cleft that is at the interface of two protofilaments of the paired helical filament, and by causing charge repulsions between tau layers of the fibril. In support of this, we observe separation of the protofilaments that EGCG wedges between, and accompanying displacement of the adjacent β-helix domain. By resolving the site of EGCG binding, our structure defines a pharmacophore-like cleft in the AD-tau fibril that will be of use for the discovery of surrogate compounds with more desirable drug-like properties.


Sign in / Sign up

Export Citation Format

Share Document