molecular action
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 45)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Pedro Buzon ◽  
Alejandro Velazquez-Cruz ◽  
Katiuska Gonzalez-Arzola ◽  
Antonio Diaz-Quintana ◽  
Irene Diaz-Moreno ◽  
...  

Chromatin homeostasis mediates some of the most fundamental processes in the eukaryotic cell. In this regard, histone chaperones have emerged as major regulatory factors during DNA replication, repair, and transcription. However, the dynamic nature of these processes has severely impeded their characterization at the molecular level. Here we apply single-molecule probing by fluorescence optical tweezers to follow histone chaperone dynamics in real-time. The molecular action of SET/template-activating factor-Iβ and nucleophosmin 1, representing the two most common histone chaperone folds, were examined using both nucleosomes and isolated core histones. We show that these chaperones present binding specificity for partially dismantled nucleosomes and are able to recognize and disrupt non-native histone-DNA interactions. Furthermore, we reveal that cytochrome c inhibition of histone chaperones is coupled to chaperone accumulation on DNA-bound histones. Our single-molecule approach shows that despite the drastically different structures of these chaperones, they present conserved modes of action mediating nucleosome remodeling.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 439
Author(s):  
Lihu Zhang ◽  
Chunyi Zhu ◽  
Xiaoqing Liu ◽  
Erzheng Su ◽  
Fuliang Cao ◽  
...  

The predicted anti-oxidation is related to apoptosis, proliferation, lipid metabolism, cell differentiation, and immune response. There are some differences in the antioxidant capacity of the four typical components of ginkgo biloba extract (EGb) including ginkgo flavone (GF), ginkgolide (G), procyanidins (OPC), and organic acids (OA), and any two members of them can exhibit apparent synergistic effects. The order of DPPH scavenging ability was: OPC > GF > OA > G. The scavenging ability of procyanidins was close to that of VC; the scavenging capacity of ABTS was GF > OPC > OA > G. The GF:OPC (1:9) showed the best synergism in scavenging DPPH and ABTS radicals. The 193 kinds of small molecules reported in EGb were obtained by analyzing the properties of EGb. In order to construct a corresponding biological activity target set, molecular docking and the network pharmacology method were employed to build the molecular action mechanism network of a compound target, and the main biological functions and signaling pathways involved with their antioxidant activities were predicted. The results displayed that the top ten compounds which belonged to the two broad categories, ginkgo flavonoids and proanthocyanidins, could interact closely with several important target proteins (CASP3, SOD2, MAPK1, HSPA4, and NQO1). This would be expected to lay a theoretical foundation for the deep development of Ginkgo biloba extract.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7146
Author(s):  
Verdiana Covelli ◽  
Manuela Grimaldi ◽  
Rosario Randino ◽  
Mohammad Firoznezhad ◽  
Maria Chiara Proto ◽  
...  

N6-Isopentenyladenosine (i6A) is a naturally occurring modified nucleoside displaying in vitro and in vivo antiproliferative and pro-apoptotic properties. In our previous studies, including an in silico inverse virtual screening, NMR experiments and in vitro enzymatic assays, we demonstrated that i6A targeted farnesyl pyrophosphate synthase (FPPS), a key enzyme involved in the mevalonate (MVA) pathway and prenylation of downstream proteins, which are aberrant in several cancers. Following our interest in the anticancer effects of FPPS inhibition, we developed a panel of i6A derivatives bearing bulky aromatic moieties in the N6 position of adenosine. With the aim of clarifying molecular action of N6-benzyladenosine analogs on the FPPS enzyme inhibition and cellular toxicity and proliferation, herein we report the evaluation of the N6-benzyladenosine derivatives’ (compounds 2a–m) effects on cell viability and proliferation on HCT116, DLD-1 (human) and MC38 (murine) colorectal cancer cells (CRC). We found that compounds 2, 2a and 2c showed a persistent antiproliferative effect on human CRC lines and compound 2f exerted a significant effect in impairing the prenylation of RAS and Rap-1A proteins, confirming that the antitumor activity of 2f was related to the ability to inhibit FPPS activity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kiyoto Kamagata

DNA-binding proteins trigger various cellular functions and determine cellular fate. Before performing functions such as transcription, DNA repair, and DNA recombination, DNA-binding proteins need to search for and bind to their target sites in genomic DNA. Under evolutionary pressure, DNA-binding proteins have gained accurate and rapid target search and binding strategies that combine three-dimensional search in solution, one-dimensional sliding along DNA, hopping and jumping on DNA, and intersegmental transfer between two DNA molecules. These mechanisms can be achieved by the unique structural and dynamic properties of these proteins. Single-molecule fluorescence microscopy and molecular dynamics simulations have characterized the molecular actions of DNA-binding proteins in detail. Furthermore, these methodologies have begun to characterize liquid condensates induced by liquid-liquid phase separation, e.g., molecular principles of uptake and dynamics in droplets. This review discusses the molecular action of DNA-binding proteins on DNA and in liquid condensate based on the latest studies that mainly focused on the model protein p53.


2021 ◽  
pp. 1-122
Author(s):  
Mark Vanderpump

This chapter covers the anatomy and physiology of the thyroid, and the molecular action of the thyroid hormone. It explains tests of hormone concentration and homeostatic control, and rare genetic disorders associated with thyroid hormone metabolism. It covers antibody screens and screening for thyroid disease, ultrasound scanning, fine needle aspiration cytology, computed tomography, positron emission tomography, and other laboratory investigations. It then covers various thyroid-associated diseases, their treatment (medical and surgical when necessary), and any follow-up management programmes.


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1677
Author(s):  
Shuqian Wang ◽  
Jing Jin ◽  
Jing Chen ◽  
Weiyang Lou

Growing evidences have showed that mucins (MUCs) are linked to occurrence and progression of human cancers. However, a comprehensive study regarding the expression, diagnosis, prognosis and mechanism of MUCs in breast cancer remains absent. Methods: A series of in silico analyses were employed in this study. Results: After performing comprehensive analysis for MUCs, MUC14 was identified as the most potential regulator in breast cancer, with downregulated expression in both mRNA and protein levels and significant diagnostic and prognostic values in breast cancer. Mechanistic exploration revealed that a potential ncRNA-mRNA axis, involving LINC01128/LINC01140/SGMS1-AS1/LINC00667-miR-137/miR-429-BCL2, might be partially responsible for MUC14′s functions in breast cancer. Conclusions: Collectively, our study elucidated a key role of MUC14 in breast cancer and also provided some clues for explanation of the molecular action mechanism of MUC14 in breast cancer.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shashank Pant ◽  
Jiaren Zhang ◽  
Eung Chang Kim ◽  
Kin Lam ◽  
Hee Jung Chung ◽  
...  

AbstractPhosphatidylinositol-4,5-bisphosphate (PIP2) is a signaling lipid which regulates voltage-gated Kv7/KCNQ potassium channels. Altered PIP2 sensitivity of neuronal Kv7.2 channel is involved in KCNQ2 epileptic encephalopathy. However, the molecular action of PIP2 on Kv7.2 gating remains largely elusive. Here, we use molecular dynamics simulations and electrophysiology to characterize PIP2 binding sites in a human Kv7.2 channel. In the closed state, PIP2 localizes to the periphery of the voltage-sensing domain (VSD). In the open state, PIP2 binds to 4 distinct interfaces formed by the cytoplasmic ends of the VSD, the gate, intracellular helices A and B and their linkers. PIP2 binding induces bilayer-interacting conformation of helices A and B and the correlated motion of the VSD and the pore domain, whereas charge-neutralizing mutations block this coupling and reduce PIP2 sensitivity of Kv7.2 channels by disrupting PIP2 binding. These findings reveal the allosteric role of PIP2 in Kv7.2 channel activation.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yin Zhang ◽  
Yong-Xin Huang ◽  
Xin Jin ◽  
Jie Chen ◽  
Li Peng ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play important roles in many physiological and pathological processes, this indicates that lncRNAs can serve as potential targets for gene therapy. Stable expression is a fundamental technology in the study of lncRNAs. The lentivirus is one of the most widely used delivery systems for stable expression. However, it was initially designed for mRNAs, and the applicability of lentiviral vectors for lncRNAs is largely unknown. Results We found that the lentiviral vector produces lncRNAs with improper termination, appending an extra fragment of ~ 2 kb to the 3ʹ-end. Consequently, the secondary structures were changed, the RNA–protein interactions were blocked, and the functions were impaired in certain lncRNAs, which indicated that lentiviral vectors are not ideal delivery systems of lncRNAs. Here, we developed a novel lncRNA delivery method called the Expression of LncRNAs with Endogenous Characteristics using the Transposon System (ELECTS). By inserting a termination signal after the lncRNA sequence, ELECTS produces transcripts without 3ʹ-flanking sequences and retains the native features and function of lncRNAs, which cannot be achieved by lentiviral vectors. Moreover, ELECTS presents no potential risk of infection for the operators and it takes much less time. ELECTS provides a reliable, convenient, safe, and efficient delivery method for stable expression of lncRNAs. Conclusions Our study demonstrated that improper transcriptional termination from lentiviral vectors have fundamental effects on molecular action and cellular function of lncRNAs. The ELECTS system developed in this study will provide a convenient and reliable method for the lncRNA study. Graphic Abstract


Biotecnia ◽  
2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Elizabeth Ponce-Rivas ◽  
Laura Camacho-Jiménez ◽  
Fernando Diaz ◽  
Edna Sánchez-Castrejón ◽  
Ariana Montiel-Arzate

Osmoregulation in crustaceans is under neuroendocrine control by the crustacean hyperglycemic hormones (CHHs), which modify water and ion concentrations in diverse species. Previous studies done by our group suggested that CHH variant B1 (CHH-B1) has effects on the osmoregulatory responses of the Pacific white shrimp Litopenaeus vannamei. For a better understanding of the molecular action mechanisms of CHH-B1 in osmoregulation, in this work, we established the dose-dependent effect of recombinant CHH-B1 on the gene expression of Na+/K+-ATPase (NKA) in gills, in contrast to changes in the osmoregulatory capacity (OC) of bilaterally eyestalk-ablated shrimp under hyper-osmotic conditions. The results indicate that CHH-B1 regulates the OC of shrimp during hypo-regulation by modulating Na+/K+-ATPase at a transcriptional level. Our results suggest that CHH has a direct participation in the control of osmo-ionic regulation mechanisms, not only in L. vannamei but in crustaceans in general.


Author(s):  
Julia Varga ◽  
Marie Kube ◽  
Katja Luck ◽  
Sandra Schick

BAF complexes are multi-subunit chromatin remodelers, which have a fundamental role in genomic regulation. Large-scale sequencing efforts have revealed frequent BAF complex mutations in many human diseases, particularly in cancer and neurological disorders. These findings not only underscore the importance of the BAF chromatin remodelers in cellular physiological processes, but urge a more detailed understanding of their structure and molecular action to enable the development of targeted therapeutic approaches for diseases with BAF complex alterations. Here, we review recent progress in understanding the composition, assembly, structure, and function of BAF complexes, and the consequences of their disease-associated mutations. Furthermore, we highlight intra-complex subunit dependencies and synthetic lethal interactions, which have emerged as promising treatment modalities for BAF-related diseases.


Sign in / Sign up

Export Citation Format

Share Document