scholarly journals Structural and functional analysis of the human Cone-rod homeobox transcription factor

2022 ◽  
Author(s):  
Penelope-Marie Clanor ◽  
Christine Buchholz ◽  
Jonathan E Hayes ◽  
Michael A Friedman ◽  
Andrew M White ◽  
...  

The cone-rod homeobox (CRX) protein is a critical K50 homeodomain transcription factor responsible for the differentiation and maintenance of photoreceptor neurons in the vertebrate retina. Mutant alleles in the human gene encoding CRX result in a variety of distinct blinding retinopathies, including retinitis pigmentosa, cone-rod dystrophy, and Leber congenital amaurosis. Despite the success of using in vitro biochemistry, animal models, and genomics approaches to study this clinically relevant transcription factor over the past 24 years since its initial characterization, there are no high-resolution structures in the published literature for the CRX protein. In this study, we use bioinformatic approaches and small-angle x-ray scattering (SAXS) structural analysis to further understand the biochemical complexity of the human CRX homeodomain (CRX-HD). We find that the CRX-HD is a compact, globular monomer in solution that can specifically bind functional cis-regulatory elements encoded upstream of retina specific genes. This study presents the first structural analysis of CRX, paving the way for a new approach to studying the biochemistry of this protein and its disease-causing mutant protein variants.

Blood ◽  
2011 ◽  
Vol 117 (9) ◽  
pp. 2735-2744 ◽  
Author(s):  
Julia Testori ◽  
Bernhard Schweighofer ◽  
Iris Helfrich ◽  
Caterina Sturtzel ◽  
Karoline Lipnik ◽  
...  

Abstract The HLX gene encoding a diverged homeobox transcription factor has been found to be up-regulated by vascular endothelial growth factor-A (VEGF-A) in endothelial cells. We have now investigated the gene repertoire induced by HLX and its potential biologic function. HLX strongly increased the transcripts for several repulsive cell-guidance proteins including UNC5B, plexin-A1, and semaphorin-3G. In addition, genes for transcriptional repressors such as HES-1 were up-regulated. In line with these findings, adenoviral overexpression of HLX inhibited endothelial cell migration, sprouting, and vessel formation in vitro and in vivo, whereas proliferation was unaffected. This inhibition of sprouting was caused to a significant part by HLX-mediated up-regulation of UNC5B as shown by short hairpin RNA (shRNA)–mediated down-modulation of the respective mRNA. VEGF-A stimulation of endothelial cells induced elevated levels of HLX over longer time periods resulting in especially high up-regulation of UNC5B mRNA as well as an increase in cells displaying UNC5B at their surface. However, induction of HLX was strongly reduced and UNC5B up-regulation completely abrogated when cells were exposed to hypoxic conditions. These data suggest that HLX may function to balance attractive with repulsive vessel guidance by up-regulating UNC5B and to down-modulate sprouting under normoxic conditions.


2019 ◽  
Vol 116 (19) ◽  
pp. 9433-9442 ◽  
Author(s):  
Jonathan K. M. Lim ◽  
Alberto Delaidelli ◽  
Sean W. Minaker ◽  
Hai-Feng Zhang ◽  
Milena Colovic ◽  
...  

The RAS family of proto-oncogenes are among the most commonly mutated genes in human cancers and predict poor clinical outcome. Several mechanisms underlying oncogenic RAS transformation are well documented, including constitutive signaling through the RAF-MEK-ERK proproliferative pathway as well as the PI3K-AKT prosurvival pathway. Notably, control of redox balance has also been proposed to contribute to RAS transformation. However, how homeostasis between reactive oxygen species (ROS) and antioxidants, which have opposing effects in the cell, ultimately influence RAS-mediated transformation and tumor progression is still a matter of debate and the mechanisms involved have not been fully elucidated. Here, we show that oncogenic KRAS protects fibroblasts from oxidative stress by enhancing intracellular GSH levels. Using a whole transcriptome approach, we discovered that this is attributable to transcriptional up-regulation of xCT, the gene encoding the cystine/glutamate antiporter. This is in line with the function of xCT, which mediates the uptake of cystine, a precursor for GSH biosynthesis. Moreover, our results reveal that the ETS-1 transcription factor downstream of the RAS-RAF-MEK-ERK signaling cascade directly transactivates the xCT promoter in synergy with the ATF4 endoplasmic reticulum stress-associated transcription factor. Strikingly, xCT was found to be essential for oncogenic KRAS-mediated transformation in vitro and in vivo by mitigating oxidative stress, as knockdown of xCT strongly impaired growth of tumor xenografts established from KRAS-transformed cells. Overall, this study uncovers a mechanism by which oncogenic RAS preserves intracellular redox balance and identifies an unexpected role for xCT in supporting RAS-induced transformation and tumorigenicity.


2018 ◽  
Vol 200 (18) ◽  
Author(s):  
Dawn A. Manias ◽  
Gary M. Dunny

ABSTRACTIt was shown previously that the disruption of theahrCgene encoding a predicted ArgR family transcription factor results in a severe defect in biofilm formationin vitro, as well as a significant attenuation of virulence ofEnterococcus faecalisstrain OG1RF in multiple experimental infection models. Using transcriptome sequencing (RNA-seq), we observedahrC-dependent changes in the expression of more than 20 genes. AhrC-repressed genes included predicted determinants of arginine catabolism and several other metabolic genes and predicted transporters, while AhrC-activated genes included determinants involved in the production of surface protein adhesins. Most notably, the structural and regulatory genes of theebplocus encoding adhesive pili were positively regulated, as well as theacegene, encoding a collagen-binding adhesin. UsinglacZtranscription reporter fusions, we determined thatahrCand a secondargRtranscription factor gene,argR2, both function to activate the expression ofebpR, which directly activates the transcription of the pilus structural genes. Our data suggest that in the wild-typeE. faecalis, the low levels of EbpR limit the expression of pili and that biofilm biomass is also limited by the amount of pili expressed by the bacteria. The expression ofaceis similarly enhanced by AhrC and ArgR2, butaceexpression is not dependent on EbpR. Our results demonstrate the existence of novel regulatory cascades controlled by a pair of ArgR family transcription factors that might function as a heteromeric protein complex.IMPORTANCECell surface adhesins play critical roles in the formation of biofilms, host colonization, and the pathogenesis of opportunistic infections byEnterococcus faecalis. Here, we present new results showing that the expression of two major enterococcal surface adhesins,ebppili, and the collagen-binding protein Ace is positively regulated at the transcription level by twoargRfamily transcription factors, AhrC and ArgR2. In the case of pili, the direct target of regulation is theebpRgene, previously shown to activate the transcription of the pilus structural genes, while the activation ofacetranscription appears to be directly impacted by the two ArgR proteins. These transcription factors may represent new targets for blocking enterococcal infections.


1999 ◽  
Vol 340 (3) ◽  
pp. 855-862 ◽  
Author(s):  
Zafar ZAMAN ◽  
Susan B. BOWMAN ◽  
Geoff D. KORNFELD ◽  
Alistair J. P. BROWN ◽  
Ian W. DAWES

The yeast LPD1 gene encoding lipoamide dehydrogenase is subject to the general control of amino acid biosynthesis mediated by the GCN4 transcription factor. This is striking in that it demonstrates that GCN4-mediated regulation extends much farther upstream than simply to the direct pathways for amino acid and purine biosynthesis. In yeast, lipoamide dehydrogenase functions in at least three multienzyme complexes: pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase (which function in the entry of pyruvate into, and metabolism via, the citric acid cycle) and glycine decarboxylase. When wild-type cells were shifted from growth on amino acid-rich to amino acid-deficient medium, the expression of lipoamide dehydrogenase was induced approx. 2-fold. In a similar experiment no such induction was observed in isogenic gcn4 mutant cells. Northern analysis indicated that amino acid starvation affected levels of the LPD1 transcript. In the upstream region of LPD1 are three matches to the consensus for control mediated by GCN4. Directed mutagenesis of each site, and of all combinations of sites, suggests that only one site might be important for the general control response under the conditions tested. Gel-retardation analysis with GCN4 protein synthesized in vitro has indicated that GCN4 can bind in vitro to at least two of the consensus motifs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252333
Author(s):  
Andrew S. Urquhart ◽  
Candace E. Elliott ◽  
Wei Zeng ◽  
Alexander Idnurm

Sirodesmin, the major secondary metabolite produced by the plant pathogenic fungus Leptosphaeria maculans in vitro, has been linked to disease on Brassica species since the 1970s, and yet its role has remained ambiguous. Re-examination of gene expression data revealed that all previously described genes and two newly identified genes within the sir gene cluster in the genome are down-regulated during the crucial early establishment stages of blackleg disease on Brassica napus. To test if this is a strategy employed by the fungus to avoid damage to and then detection by the host plant during the L. maculans asymptomatic biotrophic phase, sirodesmin was produced constitutively by overexpressing the sirZ gene encoding the transcription factor that coordinates the regulation of the other genes in the sir cluster. The sirZ over-expression strains had a major reduction in pathogenicity. Mutation of the over-expression construct restored pathogenicity. However, mutation of two genes, sirP and sirG, required for specific steps in the sirodesmin biosynthesis pathway, in the sirZ over-expression background resulted in strains that were unable to synthesize sirodesmin, yet were still non-pathogenic. Elucidating the basis for this pathogenicity defect or finding ways to overexpress sirZ during disease may provide new strategies for the control of blackleg disease.


2018 ◽  
Vol 215 (5) ◽  
pp. 1449-1462 ◽  
Author(s):  
Difeng Fang ◽  
Kairong Cui ◽  
Gangqing Hu ◽  
Rama Krishna Gurram ◽  
Chao Zhong ◽  
...  

GATA-binding protein 3 (GATA3) acts as the master transcription factor for type 2 T helper (Th2) cell differentiation and function. However, it is still elusive how GATA3 function is precisely regulated in Th2 cells. Here, we show that the transcription factor B cell lymphoma 11b (Bcl11b), a previously unknown component of GATA3 transcriptional complex, is involved in GATA3-mediated gene regulation. Bcl11b binds to GATA3 through protein–protein interaction, and they colocalize at many important cis-regulatory elements in Th2 cells. The expression of type 2 cytokines, including IL-4, IL-5, and IL-13, is up-regulated in Bcl11b-deficient Th2 cells both in vitro and in vivo; such up-regulation is completely GATA3 dependent. Genome-wide analyses of Bcl11b- and GATA3-regulated genes (from RNA sequencing), cobinding patterns (from chromatin immunoprecipitation sequencing), and Bcl11b-modulated epigenetic modification and gene accessibility suggest that GATA3/Bcl11b complex is involved in limiting Th2 gene expression, as well as in inhibiting non-Th2 gene expression. Thus, Bcl11b controls both GATA3-mediated gene activation and repression in Th2 cells.


Blood ◽  
2011 ◽  
Vol 117 (14) ◽  
pp. 3748-3758 ◽  
Author(s):  
Kenji Kitajima ◽  
Ken-ichi Minehata ◽  
Kenji Sakimura ◽  
Toru Nakano ◽  
Takahiko Hara

Abstract Identification of genes involved in in vitro differentiation induction of embryonic stem cells (ESCs) into hematopoietic stem cells (HSCs) has been challenged during last decade. To date, a homeobox transcription factor Hoxb4 has been only demonstrated to possess such an effect in mice. Here, we show that HSC-like cells were efficiently induced from mouse ESCs by enforced expression of Lhx2, a LIM-homeobox transcription factor. Transduction of Lhx2 into ESC-derived mesodermal cells resulted in robust differentiation of c-Kit+/Sca-1+/Lineage− (KSL) cells in vitro. The KSL cell induction frequency was superior to the case of Hoxb4. Furthermore, transplantation of Lhx2-transduced hematopoietic cells into lethally irradiated mice resulted in multilineage repopulation of hematopoietic cells over 4 months. Transduction of Lhx2 into induced pluripotent stem cells (iPSCs) was also effective in generating KSL cells in vitro, as well as HSC-like activities in vivo. These results demonstrate that ectopic expression of Lhx2 confers an in vivo engrafting capacity to ESC/iPSC-derived hematopoietic cells and in vivo behavior of iPSC-derived hematopoietic cells is almost identical to that of ESC-derived cells.


2019 ◽  
Vol 3 (12) ◽  
pp. 2236-2257 ◽  
Author(s):  
Samir Mehanovic ◽  
Raifish E Mendoza-Villarroel ◽  
Robert S Viger ◽  
Jacques J Tremblay

Abstract The nuclear receptor chicken ovalbumin upstream promoter–transcription factor type II (COUP-TFII)/NR2F2 is expressed in adult Leydig cells, and conditional deletion of the Coup-tfii/Nr2f2 gene impedes their differentiation. Steroid production is also reduced in COUP-TFII–depleted Leydig cells, supporting an additional role in steroidogenesis for this transcription factor. COUP-TFII action in Leydig cells remains to be fully characterized. In the present work, we report that COUP-TFII is an essential regulator of the gene encoding the anti-Müllerian hormone receptor type 2 (Amhr2), which participates in Leydig cell differentiation and steroidogenesis. We found that Amhr2 mRNA levels are reduced in COUP-TFII–depleted MA-10 Leydig cells. Consistent with this, COUP-TFII directly activates a −1486 bp fragment of the mouse Amhr2 promoter in transient transfection assays. The COUP-TFII responsive region was localized between −67 and −34 bp. Chromatin immunoprecipitation assay confirmed COUP-TFII recruitment to the proximal Amhr2 promoter whereas DNA precipitation assay revealed that COUP-TFII associates with the −67/−34 bp region in vitro. Even though the −67/−34 bp region contains an imperfect nuclear receptor element, COUP-TFII–mediated activation of the Amhr2 promoter requires a GC-rich sequence at −39 bp known to bind the specificity protein (SP)1 transcription factor. COUP-TFII transcriptionally cooperates with SP1 on the Amhr2 promoter. Mutations that altered the GCGGGGCGG sequence at −39 bp abolished COUP-TFII–mediated activation, COUP-TFII/SP1 cooperation, and reduced COUP-TFII binding to the proximal Amhr2 promoter. Our data provide a better understanding of the mechanism of COUP-TFII action in Leydig cells through the identification and regulation of the Amhr2 promoter as a novel target.


2020 ◽  
Vol 319 (6) ◽  
pp. H1380-H1386
Author(s):  
Guangrui Lai ◽  
Leitong Wang ◽  
Zhen Li ◽  
Yanyan Zhao

We found that Hcy and IGFBP5 were increased, whereas NKX2.5 was decreased, in AF of CHD. Meanwhile, Hcy could upregulate IGFBP5 but downregulate NKX2.5, and IGFBP5 inhibited NKX2.5 expression in vitro. Moreover, IGFBP5 can bind to the NKX2.5 promoter region and reduce NKX2.5 transcriptional activity.


1998 ◽  
Vol 18 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Rosalía Arrebola ◽  
Nathalie Manaud ◽  
Sophie Rozenfeld ◽  
Marie-Claude Marsolier ◽  
Olivier Lefebvre ◽  
...  

ABSTRACT Transcription factor IIIC (TFIIIC) (or τ) is a large multisubunit and multifunctional factor required for transcription of all class III genes in Saccharomyces cerevisiae. It is responsible for promoter recognition and TFIIIB assembly. We report here the cloning and characterization of TFC6, an essential gene encoding the 91-kDa polypeptide, τ91, present in affinity-purified TFIIIC. τ91 has a predicted molecular mass of 74 kDa. It harbors a central cluster of His and Cys residues and has basic and acidic amino acid regions, but it shows no specific similarity to known proteins or predicted open reading frames. The TFIIIC subunit status of τ91 was established by the following biochemical and genetic evidence. Antibodies to τ91 bound TFIIIC-DNA complexes in gel shift assays; in vivo, a B block-deficient U6 RNA gene (SNR6) harboring GAL4 binding sites was reactivated by fusing the GAL4 DNA binding domain to τ91; and a point mutation in TFC6 (τ91-E330K) was found to suppress the thermosensitive phenotype of a tfc3-G349Emutant affected in the B block binding subunit (τ138). The suppressor mutation alleviated the DNA binding and transcription defects of mutant TFIIIC in vitro. These results indicated that τ91 cooperates with τ138 for DNA binding. Recombinant τ91 by itself did not interact with a tRNA gene, although it showed a strong affinity for single-stranded DNA.


Sign in / Sign up

Export Citation Format

Share Document