scholarly journals The hydrophobin-like OmSSP1 may be an effector in the ericoid mycorrhizal symbiosis

2017 ◽  
Author(s):  
Salvatore Casarrubia ◽  
Stefania Daghino ◽  
Annegret Kohler ◽  
Emmanuelle Morin ◽  
Hassine-Radhouane Khouja ◽  
...  

AbstractMutualistic and pathogenic plant-colonizing fungi use effector molecules to manipulate the host cell metabolism to allow plant tissue invasion. Some small secreted proteins (SSPs) have been identified as fungal effectors in both ectomycorrhizal and arbuscular mycorrhizal fungi, but it is currently unknown whether SSPs also play a role as effectors in other mycorrhizal associations. Ericoid mycorrhiza is a specific endomycorrhizal type that involves symbiotic fungi mostly belonging to the Leotiomycetes (Ascomycetes) and plants in the family Ericaceae. Genomic and RNASeq data from the ericoid mycorrhizal fungus Oidiodendron maius led to the identification of several symbiosis-upregulated genes encoding putative SSPs. OmSSP1, the most highly symbiosis up-regulated SSP, was found to share some features with fungal hydrophobins, even though it lacks the Pfam hydrophobin domain. Sequence alignment with other hydrophobins and hydrophobin-like fungal proteins placed OmSSP1 within Class I hydrophobins. However, the predicted features of OmSSP1 may suggest a distinct type of hydrophobin-like proteins. The presence of a predicted signal peptide and a yeast-based signal sequence trap assay demonstrate that OmSSP1 is secreted during symbiosis. OmSSP1 null-mutants showed a reduced capacity to form ericoid mycorrhiza with Vaccinium myrtillus roots, suggesting a role as effectors in the ericoid mycorrhizal interaction.


2004 ◽  
Vol 82 (8) ◽  
pp. 1166-1176 ◽  
Author(s):  
Horst Vierheilig

Abundant data are available on some aspects of the arbuscular mycorrhizal symbiosis, for example, plant nutrition, but because of difficulties immanent to arbuscular mycorrhizal fungi, such as the inability to culture them axenically, the relatively long time it takes to achieve root colonization, and the simultaneous presence of different morphologic stages of the fungus in the root, less information is accumulated on other aspects such as the regulation of mycorrhization. Regulatory processes in the plant – arbuscular mycorrhizal fungus interaction start before root colonization by the fungus and even before a direct physical contact between the host and the fungal symbiont. Some of the signals exchanged are still a matter of debate and will be discussed further on. After the penetration of the root by the fungus, depending on the developmental stage of the arbuscular mycorrhizal association (e.g., early or mature), a range of plant responses is activated. The possible function of several plant responses in the regulation of mycorrhization is discussed.Key words: arbuscular mycorrhiza, Glomales, autoregulation, flavonoid, recognition, root exudates.



2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anurag Chaturvedi ◽  
Joaquim Cruz Corella ◽  
Chanz Robbins ◽  
Anita Loha ◽  
Laure Menin ◽  
...  

AbstractEarly-diverging fungi (EDF) are distinct from Dikarya and other eukaryotes, exhibiting high N6-methyldeoxyadenine (6mA) contents, rather than 5-methylcytosine (5mC). As plants transitioned to land the EDF sub-phylum, arbuscular mycorrhizal fungi (AMF; Glomeromycotina) evolved a symbiotic lifestyle with 80% of plant species worldwide. Here we show that these fungi exhibit 5mC and 6mA methylation characteristics that jointly set them apart from other fungi. The model AMF, R. irregularis, evolved very high levels of 5mC and greatly reduced levels of 6mA. However, unlike the Dikarya, 6mA in AMF occurs at symmetrical ApT motifs in genes and is associated with their transcription. 6mA is heterogeneously distributed among nuclei in these coenocytic fungi suggesting functional differences among nuclei. While far fewer genes are regulated by 6mA in the AMF genome than in EDF, most strikingly, 6mA methylation has been specifically retained in genes implicated in components of phosphate regulation; the quintessential hallmark defining this globally important symbiosis.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sabaiporn Nacoon ◽  
Sanun Jogloy ◽  
Nuntavun Riddech ◽  
Wiyada Mongkolthanaruk ◽  
Jindarat Ekprasert ◽  
...  

AbstractIn this work, the effects of co-inoculation between an arbuscular mycorrhizal fungus (AMF) and a phosphate solubilizing bacteria (PSB) to promote the growth and production of sunchoke under field condition were investigated during 2016 and 2017. Four treatments were set up as follows: plants without inoculation, with AMF inoculation, with PSB inoculation and with co-inoculation of PSB and AMF. The results showed the presence of PSB and AMF colonization at the harvest stage in both years. This suggested the survival of PSB and successful AMF colonization throughout the experiments. According to correlation analysis, PSB positively affected AMF spore density and colonization rate. Also, both AMF and PSB positively correlated with growth and production of sunchoke. Co-inoculation could enhance various plant parameters. However, better results in 2016 were found in co-inoculation treatment, while AMF inoculation performed the best in 2017. All of these results suggested that our AMF and PSB could effectively promote growth and production of sunchoke under field conditions. Such effects were varied due to different environmental conditions each year. Note that this is the first study showing successful co-inoculation of AMF and PSB for promoting growth and yield of sunchoke in the real cultivation fields.



1995 ◽  
Vol 75 (1) ◽  
pp. 269-275 ◽  
Author(s):  
S. M. Boyetchko ◽  
J. P. Tewari

The relative susceptibility of selected barley cultivars produced in western Canada to vesicular-arbuscular mycorrhizal (VAM) fungi under field and greenhouse conditions was evaluated in this study. Cultivars tested under field conditions at the University of Alberta and Lacombe research stations showed no significant differences in VAM colonization of barley roots; colonization was light. Greenhouse trials at the University of Alberta with eight cultivars inoculated with individual mycorrhizal species illustrated significant differences among the barley cultivars in their reactions to Glomus dimorphicum, G. intraradices, and G. mosseae. Distinct differences were observed in the ability of each Glomus species to colonize the barley cultivars. The VAM fungi increased growth and yield in some cultivars, depending on the Glomus species. This study indicates that a degree of host-specificity exists in VAM fungi and that the host-mycorrhizal fungus genotypes may influence the effectiveness of the symbiosis. Key words: Barley, cultivars, susceptibility, VA mycorrhizal fungi



2018 ◽  
Author(s):  
Ivan D. Mateus ◽  
Frédéric G. Masclaux ◽  
Consolée Aletti ◽  
Edward C. Rojas ◽  
Romain Savary ◽  
...  

AbstractArbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organisation during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation plays a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype x genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.



2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Li Cui ◽  
Feng Guo ◽  
Jialei Zhang ◽  
Sha Yang ◽  
JingJing Meng ◽  
...  

Abstract Peanut yield is severely affected by exchangeable calcium ion (Ca2+) deficiency in the soil. Arbuscular mycorrhizal (AM) symbiosis increases the absorption of Ca2+ for host plants. Here, we analyzed the physiological and transcriptional changes in the roots of Arachis hypogaea L. colonized by Funneliformismosseae under Ca2+-deficient and -sufficient conditions. The results showed that exogenous Ca2+ application increased arbuscular mycorrhizal fungi (AMF) colonization, plant dry weight, and Ca content of AM plants. Simultaneously, transcriptome analysis showed that Ca2+ application further induced 74.5% of differentially expressed gene transcripts in roots of AM peanut seedlings. These genes are involved in AM symbiosis development, hormone biosynthesis and signal transduction, and carotenoid and flavonoid biosynthesis. The transcripts of AM-specific marker genes in AM plants with Ca2+ deprivation were further up-regulated by Ca2+ application. Gibberellic acid (GA3) and flavonoid contents were higher in roots of AM- and Ca2+-treated plants, but salicylic acid (SA) and carotenoid contents specifically increased in roots of the AM plants. Thus, these results suggest that the synergy of AM symbiosis and Ca2+ improves plant growth due to the shared GA- and flavonoid-mediated pathway, whereas SA and carotenoid biosynthesis in peanut roots are specific to AM symbiosis.



1999 ◽  
Vol 77 (9) ◽  
pp. 1391-1397
Author(s):  
Genevieve Louise Mark ◽  
John E Hooker ◽  
Alexander Hahn ◽  
Chris T Wheeler

Micropropagated, rooted, and calli explants of Casuarina equisetifolia L. were inoculated with Frankia UGL 020605S and the arbuscular mycorrhizal fungus (AMF) Glomus mosseae, in single and dual co-culture, in vitro. Different micropropagation media formulations were evaluated for their capacity to stimulate germination of G. mosseae spores and growth of Frankia. Murashige and Skoog basal nutrient (half strength) medium, supplemented with 6-benzylaminopurine (BAP), 2,4-dichlorophenoxyacetic acid (2,4-D), and pyruvate was selected for the in vitro co-culture of C. equisetifolia callus explants, G. mosseae, and Frankia. This medium (M4) supported 70% AMF spore germination with 44 and 34% of the germinating spores producing single and branched hyphal strands, respectively. Hoaglands (quarter strength, modified by Hoaglands and Arnon (1950)) nutrient medium (M5) with no supplements was selected for the in vitro co-culture of rooted C. equisetifolia explants, G. mosseae, and Frankia and supported 57% AMF spore germination with 29 and 40% of the germinating spores producing single and branched hyphal strands, respectively. Both media supported significant growth of Frankia. In both cases agar was substituted with Terragreen(r). AMF appressoria and intercellular hyphae were observed in rooted C. equisetifolia at 28 days; arbuscule formation occurred at 56 days postinoculation. Frankia infection was evident after 28 days. This was observed in both dual and single in vitro co-cultures. No specific immunofluorescent or immunogold reactions to monoclonal antibodies (mABs) anti-Frankia < 8C5 > and anti-G. mosseae < F5G5 > were evident in C. equisetifolia callus explants.Key words: arbuscular mycorrhizal fungi (AMF), Frankia, Casuarina, micropropagation, immunofluorescent labelling.



2012 ◽  
Vol 518-523 ◽  
pp. 5381-5384
Author(s):  
Song Mei Shi ◽  
Bo Tu ◽  
Dai Jun Liu ◽  
Xiao Hong Yang

Physic nut (Jatropha curcas Linn., Euphorbiaceae) is one of the hottest biomass energy plant studied by scientists. This paper first reviewed the symbiosis relationship between physic nut and arbuscular mycorrhizal fungi. The researches have showed that diversity of arbuscular mycorrhizal fungi (AMF) exists around the rhizosphere of physic nut. The AMF hyphae colonize root tips of physic nut to develop arbuscular mycorrhizae. The construction of mycorrhizal symbiosis relationship improves the nutritional absorption, promotes the growth and development of seedlings, and enhance the stress tolerance capacity of physic nut. This paper also displays a prospect for mycorrhizal physic nut research in the future, such as mycorrhizal system, the molecular mechanism for stress resistance and gene engineering. As an important resource of biomass energy, mycorrhizal physic nut has a huge exploitation potential and practical value.



2002 ◽  
Vol 68 (4) ◽  
pp. 1919-1924 ◽  
Author(s):  
Ulrich Hildebrandt ◽  
Katharina Janetta ◽  
Hermann Bothe

ABSTRACT When surface-sterilized spores of the arbuscular mycorrhizal fungus (AMF) Glomus intraradices Sy167 were germinated on agar plates in the slightly modified minimum mineral medium described by G. Bécard and J. A. Fortin (New Phytol. 108:211-218, 1988), slime-forming bacteria, identified as Paenibacillus validus, frequently grew up. These bacteria were able to support growth of the fungus on the agar plates. In the presence of P. validus, hyphae branched profusely and formed coiled structures. These were much more densely packed than the so-called arbuscule-like structures which are formed by AMF grown in coculture with carrot roots transformed with T-DNA from Agrobacterium rhizogenes. The presence of P. validus alone also enabled G. intraradices to form new spores, mainly at the densely packed hyphal coils. The new spores were not as abundant as and were smaller than those formed by AMF in the monoxenic culture with carrot root tissues, but they also contained lipid droplets and a large number of nuclei. In these experiments P. validus could not be replaced by bacteria such as Escherichia coli K-12 or Azospirillum brasilense Sp7. Although no conditions under which the daughter spores regerminate and colonize plants have been found yet, and no factor(s) from P. validus which stimulates fungal growth has been identified, the present findings might be a significant step forward toward growth of AMF independent of any plant host.



2001 ◽  
Vol 79 (4) ◽  
pp. 381-388 ◽  
Author(s):  
Leanne J Philip ◽  
Usher Posluszny ◽  
John N Klironomos

Lythrum salicaria L., purple loosestrife, is a heterostylous, perennial plant with prolific and at times invasive vegetative growth and sexual reproduction. Sexual reproduction occurs following pollination and fertilization between two different floral morphs. We investigated the influence of the arbuscular mycorrhizal fungus, Glomus aggregatum Schenck and Smith emend. Koske, on the vegetative growth and sexual reproductive potential of L. salicaria. Mycorrhiza decreased plant biomass both aboveground and belowground. Flower production, number of days to anthesis, numbers of flowers per inflorescence, and inflorescence lengths were not significantly different between mycorrhizal and non-mycorrhizal treatments. However, pollen production per anther and per flower increased with mycorrhizal colonization. Though ovule production was not affected, some aspects of purple loosestrife morphology did change. Plants with mycorrhizae produced inflorescence (in lateral positions) further up the stem. In addition, flower distribution within an inflorescence differed according to morph (short, mid, and long style) such that in the mid and long morphs flower number increased with inflorescence length and was unevenly distributed, while in the short morph this distribution appeared even. The relative biomass of stems, leaves, lateral branches, and reproductive structures were not significantly different in mycorrhizal plants, whereas in the absence of mycorrhizal colonization, stem biomass was higher relative to other structures. This study suggests some vegetative and reproductive characteristics in purple loosestrife change with an association with arbuscular mycorrhizal fungi.Key words: purple loosestrife, arbuscular mycorrhizal fungi, plant reproduction.



Sign in / Sign up

Export Citation Format

Share Document