scholarly journals “CapZyme-Seq” comprehensively defines promoter-sequence determinants for RNA 5’ capping with NAD+

2017 ◽  
Author(s):  
Irina O. Vvedenskaya ◽  
Jeremy G. Bird ◽  
Yuanchao Zhang ◽  
Yu Zhang ◽  
Xinfu Jiao ◽  
...  

SUMMARYNucleoside-containing metabolites such as NAD+ can be incorporated as “5′ caps” on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report “CapZyme-Seq,” a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-Seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ~16,000 promoter sequences. The results define preferred transcription start-site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-Seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs. Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.

2020 ◽  
Vol 117 (7) ◽  
pp. 3560-3567 ◽  
Author(s):  
Daniel J. Luciano ◽  
Joel G. Belasco

Stresses that increase the cellular concentration of dinucleoside tetraphosphates (Np4Ns) have recently been shown to impact RNA degradation by inducing nucleoside tetraphosphate (Np4) capping of bacterial transcripts. However, neither the mechanism by which such caps are acquired nor the function of Np4Ns in bacteria is known. Here we report that promoter sequence changes upstream of the site of transcription initiation similarly affect both the efficiency with which Escherichia coli RNA polymerase incorporates dinucleoside polyphosphates at the 5′ end of nascent transcripts in vitro and the percentage of transcripts that are Np4-capped in E. coli, clear evidence for Np4 cap acquisition by Np4N incorporation during transcription initiation in bacterial cells. E. coli RNA polymerase initiates transcription more efficiently with Np4As than with ATP, particularly when the coding strand nucleotide that immediately precedes the initiation site is a purine. Together, these findings indicate that Np4Ns function in bacteria as precursors to Np4 caps and that RNA polymerase has evolved a predilection for synthesizing capped RNA whenever such precursors are abundant.


2019 ◽  
Author(s):  
Ramesh Padmanabhan ◽  
Dennis Miller

1.1AbstractRNA polymerases (RNAPs) differ from other polymerases in that they can bind promoter sequences and initiate de novo transcription. Promoter recognition requires the presence of specific DNA binding domains in the polymerase. The structure and mechanistic aspects of transcription by the bacteriophage T7 RNA polymerase (T7 RNAP) are well characterized. This single subunit RNAP belongs to the family of RNAPs which also includes the T3, SP6 and mitochondrial RNAPs. High specificity for its promoter, the requirement of no additional transcription factors, and high fidelity of initiation from a specific site in the promoter makes it the polymerase of choice to study the mechanistic aspects of transcription. The structure and function of the catalytic domains of this family of polymerases are highly conserved suggesting a common mechanism underlying transcription. Although the two groups of single subunit RNAPs, mitochondrial and bacteriophage, have remarkable structural conservation, they recognize quite dissimilar promoters. Specifically, the bacteriophage promoters recognize a 23 nucleotide promoter extending from −17 to + 6 nucleotides relative to the site of transcription initiation, while the well characterized promoter recognized by the yeast mitochondrial RNAP is nine nucleotides in length extending from −8 to +1 relative to the site of transcription initiation. Promoters recognized by the bacteriophage RNAPs are also well characterized with distinct functional domains involved in promoter recognition and transcription initiation. Thorough mutational studies have been conducted by altering individual base-pairs within these domains. Here we describe experiments to determine whether the prototype bacteriophage RNAP is able to recognize and initiate at truncated promoters similar to mitochondrial promoters. Using an in vitro oligonucleotide transcriptional system, we have assayed transcription initiation activity by T7 RNAP. When a complete or almost complete (20 to 16 nucleotide) double stranded T7 RNAP promoter sequence is present, small RNA’s are produced through template-independent and promoter-dependent stuttering corresponding to abortive initiation, and this effect was lost with a scrambled promoter sequence. When partial double stranded promoter sequences (10 to 12 nucleotides) are supplied, template dependent de novo initiation of RNA occurs at a site different from the canonical +1-initiation site. The site of transcription initiation is determined by a recessed 3’ end based paired to the template strand of DNA rather than relative to the partial promoter sequence. Understanding the mechanism underlying this observation helps us to understand the role of the elements in the T7 promoter, and provides insights into the promoter evolution of the single-subunit RNAPs.


1998 ◽  
Vol 180 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Barbara J. MacGregor ◽  
Russell K. Karls ◽  
Timothy J. Donohue

ABSTRACT These experiments sought to identify what form of RNA polymerase transcribes the P1 promoter for the Rhodobacter sphaeroidescytochrome c 2 gene (cycA). In vitro, cycA P1 was recognized by an RNA polymerase holoenzyme fraction that transcribes several well-characterizedEscherichia coli heat shock (ς32) promoters. The in vivo effects of mutations flanking the transcription initiation site (+1) also suggested that cycA P1 was recognized by an RNA polymerase similar to E. coli Eς32. Function of cycA P1 was not altered by mutations more than 35 bp upstream of position +1 or by alterations downstream of −7. A point mutation at position −34 that is towards the E. coliEς32 −35 consensus sequence (G34T) increasedcycA P1 activity ∼20-fold, while several mutations that reduced or abolished promoter function changed highly conserved bases in presumed −10 or −35 elements. In addition, cycA P1 function was retained in mutant promoters with a spacer region as short as 14 nucleotides. When either wild-type or G34T promoters were incubated with reconstituted RNA polymerase holoenzymes,cycA P1 transcription was observed only with samples containing either a 37-kDa subunit that is a member of the heat shock sigma factor family (Eς37) or a 38-kDa subunit that also allows core RNA polymerase to recognize E. coli heat shock promoters (Eς38) (R. K. Karls, J. Brooks, P. Rossmeissl, J. Luedke, and T. J. Donohue, J. Bacteriol. 180:10–19, 1998).


2006 ◽  
Vol 188 (7) ◽  
pp. 2343-2354 ◽  
Author(s):  
Gonzalo Durante-Rodríguez ◽  
María Teresa Zamarro ◽  
José Luis García ◽  
Eduardo Díaz ◽  
Manuel Carmona

ABSTRACT The role of oxygen in the transcriptional regulation of the PN promoter that controls the bzd operon involved in the anaerobic catabolism of benzoate in the denitrifying Azoarcus sp. strain CIB has been investigated. In vivo experiments using PN ::lacZ translational fusions, in both Azoarcus sp. strain CIB and Escherichia coli cells, have shown an oxygen-dependent repression effect on the transcription of the bzd catabolic genes. E. coli Fnr was required for the anaerobic induction of the PN promoter, and the oxygen-dependent repression of the bzd genes could be bypassed by the expression of a constitutively active Fnr* protein. In vitro experiments revealed that Fnr binds to the PN promoter at a consensus sequence centered at position −41.5 from the transcription start site overlapping the −35 box, suggesting that PN belongs to the class II Fnr-dependent promoters. Fnr interacts with RNA polymerase (RNAP) and is strictly required for transcription initiation after formation of the RNAP-PN complex. An fnr ortholog, the acpR gene, was identified in the genome of Azoarcus sp. strain CIB. The Azoarcus sp. strain CIB acpR mutant was unable to grow anaerobically on aromatic compounds and it did not drive the expression of the PN ::lacZ fusion, suggesting that AcpR is the cognate transcriptional activator of the PN promoter. Since the lack of AcpR in Azoarcus sp. strain CIB did not affect growth on nonaromatic carbon sources, AcpR can be considered a transcriptional regulator of the Fnr/Crp superfamily that has evolved to specifically control the central pathway for the anaerobic catabolism of aromatic compounds in Azoarcus.


2015 ◽  
Vol 108 (2) ◽  
pp. 115a
Author(s):  
Anne Plochowietz ◽  
Diego Duchi Llumigusin ◽  
Pawel Zawadzki ◽  
Afaf H. El-Sagheer ◽  
Tom Brown ◽  
...  

2001 ◽  
Vol 183 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Leonid Minakhin ◽  
Sergei Nechaev ◽  
Elizabeth A. Campbell ◽  
Konstantin Severinov

ABSTRACT The three-dimensional structure of DNA-dependent RNA polymerase (RNAP) from thermophilic Thermus aquaticus has recently been determined at 3.3 Å resolution. Currently, very little is known about T. aquaticus transcription and no genetic system to study T. aquaticus RNAP genes is available. To overcome these limitations, we cloned and overexpressed T. aquaticusRNAP genes in Escherichia coli. Overproduced T. aquaticus RNAP subunits assembled into functional RNAP in vitro and in vivo when coexpressed in E. coli. We used the recombinant T. aquaticus enzyme to demonstrate that transcription initiation, transcription termination, and transcription cleavage assays developed for E. coli RNAP can be adapted to study T. aquaticus transcription. However, T. aquaticus RNAP differs from the prototypical E. colienzyme in several important ways: it terminates transcription less efficiently, has exceptionally high rate of intrinsic transcript cleavage, and is highly resistant to rifampin. Our results, together with the high-resolution structural information, should now allow a rational analysis of transcription mechanism by mutation.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


2021 ◽  
Vol 11 (15) ◽  
pp. 6865
Author(s):  
Eun Seon Lee ◽  
Joung Hun Park ◽  
Seong Dong Wi ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
...  

The thioredoxin-h (Trx-h) family of Arabidopsis thaliana comprises cytosolic disulfide reductases. However, the physiological function of Trx-h2, which contains an additional 19 amino acids at its N-terminus, remains unclear. In this study, we investigated the molecular function of Trx-h2 both in vitro and in vivo and found that Arabidopsis Trx-h2 overexpression (Trx-h2OE) lines showed significantly longer roots than wild-type plants under cold stress. Therefore, we further investigated the role of Trx-h2 under cold stress. Our results revealed that Trx-h2 functions as an RNA chaperone by melting misfolded and non-functional RNAs, and by facilitating their correct folding into active forms with native conformation. We showed that Trx-h2 binds to and efficiently melts nucleic acids (ssDNA, dsDNA, and RNA), and facilitates the export of mRNAs from the nucleus to the cytoplasm under cold stress. Moreover, overexpression of Trx-h2 increased the survival rate of the cold-sensitive E. coli BX04 cells under low temperature. Thus, our data show that Trx-h2 performs function as an RNA chaperone under cold stress, thus increasing plant cold tolerance.


Sign in / Sign up

Export Citation Format

Share Document