scholarly journals Coordinated activity of sleep and arousal neurons for stabilizing sleep/wake states in Drosophila

2018 ◽  
Author(s):  
Jinfei D. Ni ◽  
Tyler H. Ogunmowo ◽  
Hannah Hackbart ◽  
Ahmed Elsheikh ◽  
Adishthi S. Gurav ◽  
...  

SummaryThe output arm of the sleep homeostat in Drosophila is a group of neurons with projections to the dorsal fan-shaped body (dFSB) of the central complex in the brain. However, neurons that regulate the sleep homeostat remain poorly understood. Using neurogenetic approaches combined with ex vivo Ca2+ imaging, we identify two groups of sleep-regulatory neurons that modulate the activity of the sleep homeostat in an opposing fashion. The sleep-promoting neurons activate the sleep homeostat with glutamate, whereas the arousal-promoting neurons down-regulate the sleep homeostat’s output with dopamine. Co-activating these two inputs leads to frequent shifts between sleep and wake states. We also show that dFSB sleep homeostat neurons release the neurotransmitter GABA that inhibits octopaminergic arousal neurons. Taken together, we suggest coordinated neuronal activity of sleep- and arousal-promoting neurons is essential for stabilizing sleep/wake states.HighlightsGlutamate released by AstA neurons activates dFSBAstAR1 sleep-promoting neuronsDopamine down-regulates the activity of dFSBAstAR1 neuronsSimultaneous glutamate and dopamine input causes rapid sleep and awake swingsGABA released by dFSBAstAR1 neurons promotes sleep by inhibiting arousal neurons

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jinfei D Ni ◽  
Adishthi S Gurav ◽  
Weiwei Liu ◽  
Tyler H Ogunmowo ◽  
Hannah Hackbart ◽  
...  

One output arm of the sleep homeostat in Drosophila appears to be a group of neurons with projections to the dorsal fan-shaped body (dFB neurons) of the central complex in the brain. However, neurons that regulate the sleep homeostat remain poorly understood. Using neurogenetic approaches combined with Ca2+ imaging, we characterized synaptic connections between dFB neurons and distinct sets of upstream sleep-regulatory neurons. One group of the sleep-promoting upstream neurons is a set of circadian pacemaker neurons that activates dFB neurons via direct glutaminergic excitatory synaptic connections. Opposing this population, a group of arousal-promoting neurons downregulates dFB axonal output with dopamine. Co-activating these two inputs leads to frequent shifts between sleep and wake states. We also show that dFB neurons release the neurotransmitter GABA and inhibit octopaminergic arousal neurons. We propose that dFB neurons integrate synaptic inputs from distinct sets of upstream sleep-promoting circadian clock neurons, and arousal neurons.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7189
Author(s):  
Alexander Erofeev ◽  
Dmitriy Kazakov ◽  
Nikita Makarevich ◽  
Anastasia Bolshakova ◽  
Evgenii Gerasimov ◽  
...  

Multi-electrode arrays (MEAs) are a widely used tool for recording neuronal activity both in vitro/ex vivo and in vivo experiments. In the last decade, researchers have increasingly used MEAs on rodents in vivo. To increase the availability and usability of MEAs, we have created an open-source wireless electrophysiological complex. The complex is scalable, recording the activity of neurons in the brain of rodents during their behavior. Schematic diagrams and a list of necessary components for the fabrication of a wireless electrophysiological complex, consisting of a base charging station and wireless wearable modules, are presented.


2020 ◽  
Author(s):  
Franziska E. Müller ◽  
Volodymyr Cherkas ◽  
Gebhard Stopper ◽  
Laura C. Caudal ◽  
Laura Stopper ◽  
...  

AbstractRecent achievements in indicator optimization and imaging techniques promote the exploration of Ca2+ activity patterns as a main second messenger in many organs. Astrocytes are important regulators of brain activity and well known for their Ca2+-dependent modulation of neurons. However, standardized methods to analyze and interpret Ca2+ activity recordings are missing and hindering global comparisons. Here, we present a biophysics-based concept to analyze Ca2+signals, which includes multiple thresholds and provides the experimenter with a comprehensive toolbox for a differentiated and in-depth characterization of Ca2+ signals. We analyzed various ex vivo and in vivo imaging datasets and verify the validity of our multi-threshold event detection (MTED) algorithm across Ca2+ indicators, imaging setups, and model systems from primary cell culture to awake, head-fixed mice. Applying our MTED concept enables standardized analysis and advances research using optical readouts of cellular activity to decrypt brain function. It allowed us to obtain new insights into the complex dependence of Ca2+activity patterns on temperature and neuronal activity.Highlights→We present a robust pixel-based algorithm to analyze multidimensional fluorescence data.→Automated multiple-threshold analysis accurately quantifies changes in fluorescence across magnitudes.→It characterizes the complexity of dynamic and overlapping activity patterns of Ca2+ activity of astrocytes in vitro, in situ, and in vivo.→Its application provides quantitative parameters how temperature and neuronal activity determine astrocytic Ca2+ activity.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takahiro Morito ◽  
Ryuichi Harada ◽  
Ren Iwata ◽  
Yiqing Du ◽  
Nobuyuki Okamura ◽  
...  

AbstractBrain positron emission tomography (PET) imaging with radiolabelled proteins is an emerging concept that potentially enables visualization of unique molecular targets in the brain. However, the pharmacokinetics and protein radiolabelling methods remain challenging. Here, we report the performance of an engineered, blood–brain barrier (BBB)-permeable affibody molecule that exhibits rapid clearance from the brain, which was radiolabelled using a unique fluorine-18 labelling method, a cell-free protein radiosynthesis (CFPRS) system. AS69, a small (14 kDa) dimeric affibody molecule that binds to the monomeric and oligomeric states of α-synuclein, was newly designed for brain delivery with an apolipoprotein E (ApoE)-derived brain shuttle peptide as AS69-ApoE (22 kDa). The radiolabelled products 18F-AS69 and 18F-AS69-ApoE were successfully synthesised using the CFPRS system. Notably, 18F-AS69-ApoE showed higher BBB permeability than 18F-AS69 in an ex vivo study at 10 and 30 min post injection and was partially cleared from the brain at 120 min post injection. These results suggest that small, a brain shuttle peptide-fused fluorine-18 labelled protein binders can potentially be utilised for brain molecular imaging.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Susumu Takahashi ◽  
Takumi Hombe ◽  
Riku Takahashi ◽  
Kaoru Ide ◽  
Shinichiro Okamoto ◽  
...  

Abstract Background Salmonids return to the river where they were born in a phenomenon known as mother-river migration. The underpinning of migration has been extensively examined, particularly regarding the behavioral correlations of external environmental cues such as the scent of the mother-river and geomagnetic compass. However, neuronal underpinning remains elusive, as there have been no biologging techniques suited to monitor neuronal activity in the brain of large free-swimming fish. In this study, we developed a wireless biologging system to record extracellular neuronal activity in the brains of free-swimming salmonids. Results Using this system, we recorded multiple neuronal activities from the telencephalon of trout swimming in a rectangular water tank. As proof of principle, we examined the activity statistics for extracellular spike waveforms and timing. We found cells firing maximally in response to a specific head direction, similar to the head direction cells found in the rodent brain. The results of our study suggest that the recorded signals originate from neurons. Conclusions We anticipate that our biologging system will facilitate a more detailed investigation into the neural underpinning of fish movement using internally generated information, including responses to external cues.


Sign in / Sign up

Export Citation Format

Share Document