scholarly journals An Open-Source Wireless Electrophysiological Complex for In Vivo Recording Neuronal Activity in the Rodent’s Brain

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7189
Author(s):  
Alexander Erofeev ◽  
Dmitriy Kazakov ◽  
Nikita Makarevich ◽  
Anastasia Bolshakova ◽  
Evgenii Gerasimov ◽  
...  

Multi-electrode arrays (MEAs) are a widely used tool for recording neuronal activity both in vitro/ex vivo and in vivo experiments. In the last decade, researchers have increasingly used MEAs on rodents in vivo. To increase the availability and usability of MEAs, we have created an open-source wireless electrophysiological complex. The complex is scalable, recording the activity of neurons in the brain of rodents during their behavior. Schematic diagrams and a list of necessary components for the fabrication of a wireless electrophysiological complex, consisting of a base charging station and wireless wearable modules, are presented.

2021 ◽  
Vol 09 (06) ◽  
pp. E918-E924
Author(s):  
Tomonori Yano ◽  
Atsushi Ohata ◽  
Yuji Hiraki ◽  
Makoto Tanaka ◽  
Satoshi Shinozaki ◽  
...  

Abstract Backgrounds and study aims Gel immersion endoscopy is a novel technique to secure the visual field during endoscopy. The aim of this study was to develop a dedicated gel for this technique. Methods To identify appropriate viscoelasticity and electrical conductivity, various gels were examined. Based on these results, the dedicated gel “OPF-203” was developed. Efficacy and safety of OPF-203 were evaluated in a porcine model. Results  In vitro experiments showed that a viscosity of 230 to 1900 mPa·s, loss tangent (tanδ) ≤ 0.6, and hardness of 240 to 540 N/cm2 were suitable. Ex vivo experiments showed electrical conductivity ≤ 220 μS/cm is appropriate. In vivo experiments using gastrointestinal bleeding showed that OPF-203 provided clear visualization compared to water. After electrocoagulation of gastric mucosa in OPF-203, severe coagulative necrosis was not observed in the muscularis but limited to the mucosa. Conclusions OPF-203 is useful for gel immersion endoscopy.


2021 ◽  
Vol 2021 (9) ◽  
pp. pdb.prot106872
Author(s):  
Ayako Yamaguchi

Understanding the neural basis of behavior is a challenging task for technical reasons. Most methods of recording neural activity require animals to be immobilized, but neural activity associated with most behavior cannot be recorded from an anesthetized, immobilized animal. Using amphibians, however, there has been some success in developing in vitro brain preparations that can be used for electrophysiological and anatomical studies. Here, we describe an ex vivo frog brain preparation from which fictive vocalizations (the neural activity that would have produced vocalizations had the brain been attached to the muscle) can be elicited repeatedly. When serotonin is applied to the isolated brains of male and female African clawed frogs, Xenopus laevis, laryngeal nerve activity that is a facsimile of those that underlie sex-specific vocalizations in vivo can be readily recorded. Recently, this preparation was successfully used in other species within the genus including Xenopus tropicalis and Xenopus victorianus. This preparation allows a variety of techniques to be applied including extracellular and intracellular electrophysiological recordings and calcium imaging during vocal production, surgical and pharmacological manipulation of neurons to evaluate their impact on motor output, and tract tracing of the neural circuitry. Thus, the preparation is a powerful tool with which to understand the basic principles that govern the production of coherent and robust motor programs in vertebrates.


2018 ◽  
Vol 9 ◽  
pp. 117959721878108 ◽  
Author(s):  
David Tes ◽  
Karl Kratkiewicz ◽  
Ahmed Aber ◽  
Luke Horton ◽  
Mohsin Zafar ◽  
...  

Alzheimer disease is the most common form of dementia, affecting more than 5 million people in the United States. During the progression of Alzheimer disease, a particular protein begins to accumulate in the brain and also in extensions of the brain, ie, the retina. This protein, amyloid-β (Aβ), exhibits fluorescent properties. The purpose of this research article is to explore the implications of designing a fluorescent imaging system able to detect Aβ proteins in the retina. We designed and implemented a fluorescent imaging system with a range of applications that can be reconfigured on a fluorophore to fluorophore basis and tested its feasibility and capabilities using Cy5 and CRANAD-2 imaging probes. The results indicate a promising potential for the imaging system to be used to study the Aβ biomarker. A performance evaluation involving ex vivo and in vivo experiments is planned for future study.


2020 ◽  
Vol 22 (6) ◽  
pp. 819-829 ◽  
Author(s):  
Holger Fischer ◽  
Mohammed Ullah ◽  
Cecile C de la Cruz ◽  
Thomas Hunsaker ◽  
Claudia Senn ◽  
...  

Abstract Background Studies evaluating the CNS penetration of a novel tyrosine kinase inhibitor, entrectinib, proved challenging, particularly due to discrepancies across earlier experiments regarding P-glycoprotein (P-gp) interaction and brain distribution. To address this question, we used a novel “apical efflux ratio” (AP-ER) model to assess P-gp interaction with entrectinib, crizotinib, and larotrectinib, and compared their brain-penetration properties. Methods AP-ER was designed to calculate P-gp interaction with the 3 drugs in vitro using P-gp–overexpressing cells. Brain penetration was studied in rat plasma, brain, and cerebrospinal fluid (CSF) samples after intravenous drug infusion. Unbound brain concentrations were estimated through kinetic lipid membrane binding assays and ex vivo experiments, while the antitumor activity of entrectinib was evaluated in a clinically relevant setting using an intracranial tumor mouse model. Results Entrectinib showed lower AP-ER (1.1–1.15) than crizotinib and larotrectinib (≥2.8). Despite not reaching steady-state brain exposures in rats after 6 hours, entrectinib presented a more favorable CSF-to-unbound concentration in plasma (CSF/Cu,p) ratio (>0.2) than crizotinib and larotrectinib at steady state (both: CSF/Cu,p ~0.03). In vivo experiments validated the AP-ER approach. Entrectinib treatment resulted in strong tumor inhibition and full survival benefit in the intracranial tumor model at clinically relevant systemic exposures. Conclusions Entrectinib, unlike crizotinib and larotrectinib, is a weak P-gp substrate that can sustain CNS exposure based on our novel in vitro and in vivo experiments. This is consistent with the observed preclinical and clinical efficacy of entrectinib in neurotrophic tropomyosin receptor kinase (NTRK) and ROS1 fusion-positive CNS tumors and secondary CNS metastases.


2016 ◽  
Vol 2 (11) ◽  
pp. e1601007 ◽  
Author(s):  
Damia Mawad ◽  
Catherine Mansfield ◽  
Antonio Lauto ◽  
Filippo Perbellini ◽  
Geoffrey W. Nelson ◽  
...  

Electrically active constructs can have a beneficial effect on electroresponsive tissues, such as the brain, heart, and nervous system. Conducting polymers (CPs) are being considered as components of these constructs because of their intrinsic electroactive and flexible nature. However, their clinical application has been largely hampered by their short operational time due to a decrease in their electronic properties. We show that, by immobilizing the dopant in the conductive scaffold, we can prevent its electric deterioration. We grew polyaniline (PANI) doped with phytic acid on the surface of a chitosan film. The strong chelation between phytic acid and chitosan led to a conductive patch with retained electroactivity, low surface resistivity (35.85 ± 9.40 kilohms per square), and oxidized form after 2 weeks of incubation in physiological medium. Ex vivo experiments revealed that the conductive nature of the patch has an immediate effect on the electrophysiology of the heart. Preliminary in vivo experiments showed that the conductive patch does not induce proarrhythmogenic activities in the heart. Our findings set the foundation for the design of electronically stable CP-based scaffolds. This provides a robust conductive system that could be used at the interface with electroresponsive tissue to better understand the interaction and effect of these materials on the electrophysiology of these tissues.


2021 ◽  
Vol 11 (11) ◽  
pp. 1453
Author(s):  
Ilaria Colombi ◽  
Thierry Nieus ◽  
Marcello Massimini ◽  
Michela Chiappalone

Dissociated cortical neurons in vitro display spontaneously synchronized, low-frequency firing patterns, which can resemble the slow wave oscillations characterizing sleep in vivo. Experiments in humans, rodents, and cortical slices have shown that awakening or the administration of activating neuromodulators decrease slow waves, while increasing the spatio-temporal complexity of responses to perturbations. In this study, we attempted to replicate those findings using in vitro cortical cultures coupled with micro-electrode arrays and chemically treated with carbachol (CCh), to modulate sleep-like activity and suppress slow oscillations. We adapted metrics such as neural complexity (NC) and the perturbational complexity index (PCI), typically employed in animal and human brain studies, to quantify complexity in simplified, unstructured networks, both during resting state and in response to electrical stimulation. After CCh administration, we found a decrease in the amplitude of the initial response and a marked enhancement of the complexity during spontaneous activity. Crucially, unlike in cortical slices and intact brains, PCI in cortical cultures displayed only a moderate increase. This dissociation suggests that PCI, a measure of the complexity of causal interactions, requires more than activating neuromodulation and that additional factors, such as an appropriate circuit architecture, may be necessary. Exploring more structured in vitro networks, characterized by the presence of strong lateral connections, recurrent excitation, and feedback loops, may thus help to identify the features that are more relevant to support causal complexity.


1981 ◽  
Author(s):  
J W D McDonald ◽  
M Ali ◽  
J D Cooper ◽  
E R Townsend

The infusion of plasma containing Zymosan-activated complement (ZAC) into sheep produces leukopenia with pulmonary leukostasis and transient pulmonary arterial hypertension (PAH). Previous work has related PAH to elevations of plasma thromboxane B2 (TXB2) rather than to mechanical obstruction by sequestered leukocytes (WBC). We have investigated the source of the TXB2 formation in this model. Incubation of platelet-poor WBC preparations with arachi- donate resulted in negligible TXB2 formation. WBC-poor platelet preparations on the other hand formed significant amounts of TXB2 (approximately 6-18 ng/108 platelets). Incubation of whole sheep blood or plasma with ZAC failed to generate significant amounts of TXB2. Thus, WBC agglutination in vitro did not induce platelet TXB2 formation.Pretreatment of sheep with aspirin (ASA)(10 mg/kg IV) completely blocked TXB2 formation and PAH in response to infusion of plasma containing ZAC. The infusion of 10-50% nonnal platelets into sheep 4 hours after ASA pretreatment failed to restore TXB2 formation and pulmonary vascular response to subsequent challenge with ZAC. TXB2 formation during blood clotting ex vivo was restored by the platelet infusions. These experiments make it appear unlikely that platelets are the source of the TXB2. It is possible that the transfused platelets respond to thrombin but are unable to interact with sequestered leukocytes. Sheep lung and pulmonary artery were incubated in vitro with arachidonate. Lung formed 630 ng TXB2 and 39 ng 6-keto-PGF1α/g of wet tissue. Pulmonary artery formed 9 ng TXB2 and 180 ng 6-keto-PGF1α/g of wet tissue. The relative proportions of TXB2 and 6-keto-PGF1α formed by lung parenchyma but not pulmonary artery resemble the proportions observed in previous in vivo experiments with ZAC. It appears that lung tissue is the most likely source of TXB2 formation causing PAH in response to ZAC-mediated pulmonary leukostasis.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2037 ◽  
Author(s):  
Tavakolian-Ardakani ◽  
Hosu ◽  
Cristea ◽  
Mazloum-Ardakani ◽  
Marrazza

Neurotransmitters are endogenous chemical messengers which play an important role in many of the brain functions, abnormal levels being correlated with physical, psychotic and neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's disease. Therefore, their sensitive and robust detection is of great clinical significance. Electrochemical methods have been intensively used in the last decades for neurotransmitter detection, outclassing more complicated analytical techniques such as conventional spectrophotometry, chromatography, fluorescence, flow injection, and capillary electrophoresis. In this manuscript, the most successful and promising electrochemical enzyme-free and enzymatic sensors for neurotransmitter detection are reviewed. Focusing on the activity of worldwide researchers mainly during the last ten years (2010–2019), without pretending to be exhaustive, we present an overview of the progress made in sensing strategies during this time. Particular emphasis is placed on nanostructured-based sensors, which show a substantial improvement of the analytical performances. This review also examines the progress made in biosensors for neurotransmitter measurements in vitro, in vivo and ex vivo.


RSBO ◽  
2019 ◽  
Vol 16 (2) ◽  
pp. 109
Author(s):  
Carina Do Nascimento Menezes ◽  
Verydianna Frota Carneiro ◽  
Mônica Sampaio do Vale

Introduction: Removal of filling material from the root canal system is required when a previous endodontic treatment fails, what may result in the permanence of an unfavorable periapical condition. The intent is to completely remove the filling material inside of the root canal to achieve sufficient cleaning and shaping for successful retreatment. Objective: The aims of this article were to provide asystematic review of the different techniques of endodontic filling material associated or not with organic solvents and to analyze them critically in terms of advantages and disadvantages of each technique. Literature review: The descriptors used were “guttapercha”, “obturation,” and “retreatment” in the following databases: PubMed, MEDLINE, Latin American and Caribbean Center on Health Sciences Information (Bireme), Latin-American and CaribbeanHealth Sciences (Lilacs), Brazilian Dentistry Bibliography (BBO), and Scientific Electronic Library Online (SciELO). Publications of in vitro/ ex vivo and in vivo experiments without language restriction between the years 2010 and 2018 were selected. Conclusion: None of the techniques were capable of performing complete root canal cleaning, and the manual method was so effective as the automated method, although it requires longer working time. Furthermore, although this review confirmed that the solvent action did not allow a significantimprovement in the removal of the filling material, ultrasoundactivated irrigation proved to be an efficient adjunctive device as it could significantly reduce the volume of intracanal residuals.


Sign in / Sign up

Export Citation Format

Share Document