scholarly journals Seasonal physiological responses to heat in an alpine range-restricted bird: the Cape Rockjumper

2018 ◽  
Author(s):  
Krista N Oswald ◽  
Alan TK Lee ◽  
Ben Smit

AbstractHot, dry summer conditions impose physiological stress on endotherms, yet we have a poor understanding of how endotherms seasonally adjust their costs of thermoregulation under hot conditions. We determined whether seasonal phenotypic plasticity in evaporative cooling capacity at high temperatures explained how the range-restricted Cape Rockjumper (Chaetops frenatus; hereafter “Rockjumper”), copes with hot and dry summer temperatures of the temperate mountain peaks of southwest South Africa. We measured evaporative water loss (EWL), resting metabolic rate (RMR), and body temperature (Tb) at high air temperatures (30 to 42°C) of individuals from a wild population of Rockjumpers during winter and summer (n = 11 winter, 4 females, 7 males; n = 10 summer, 6 females, 4 males). We found Rockjumper evaporative cooling in summer imposes higher EWL (i.e. greater water costs) compared to winter, although an accompanying lack of change in RMR resulted in increased summer cooling efficiency. These patterns are similar to those observed in species that inhabit regions where summer temperatures are routinely hot but not water stressed. Our findings show that avian seasonal physiological adjustments to heat can be diverse. Further seasonal studies on thermoregulation in the heat will greatly improve our knowledge of the functional value traits such as evaporative cooling efficiency and heat tolerance hold and how they contribute to the physiological stress organisms experience in heterogenous environments.

2017 ◽  
Author(s):  
Ben Smit ◽  
Maxine C. Whitfield ◽  
William A. Talbot ◽  
Alexander R. Gerson ◽  
Andrew E. McKechnie ◽  
...  

AbstractLittle is known about the phylogenetic variation of avian evaporative cooling efficiency and heat tolerance in hot environments. We quantified thermoregulatory responses to high air temperature (Ta) in ~100-g representatives of three orders: African cuckoo (Cuculus gularis, Cuculiformes), lilac-breasted roller (Coracias caudatus, Coraciiformes), and Burchell’s starling (Lamprotornis australis, Passeriformes). All three species initiated respiratory mechanisms to increase evaporative heat dissipation when body temperature (Tb) approached 41.5°C in response to increasing Ta, with gular flutter observed in cuckoos and panting in rollers and starlings. Resting metabolic rate (RMR) and evaporative water loss (EWL) increased by quantitatively similar magnitudes in all three species, although maximum rates of EWL were proportionately lower in starlings. Evaporative cooling efficiency [defined as the ratio of evaporative heat loss (EHL) to metabolic heat production (MHP)] generally remained below 2.0 in cuckoos and starlings, but reached a maximum of ~3.5 in rollers. The high value for rollers reveals a very efficient evaporative cooling mechanism, and is similar to EHL/MHP maxima for similarly sized columbids which very effectively dissipate heat via cutaneous evaporation. This unexpected phylogenetic variation among the orders tested in the physiological mechanisms of heat dissipation is an important step toward determining the evolution of heat tolerance traits in desert birds.Summary statementWe show that avian evaporative cooling efficiency and heat tolerance display substantial taxonomic variation that are, unexpectedly, not systematically related to the use of panting versus gular flutter processes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zenon J. Czenze ◽  
Marc T. Freeman ◽  
Ryno Kemp ◽  
Barry van Jaarsveld ◽  
Blair O. Wolf ◽  
...  

Avian evaporative cooling and the maintenance of body temperature (Tb) below lethal limits during heat exposure has received more attention in small species compared to larger-bodied taxa. Here, we examined thermoregulation at air temperatures (Tair) approaching and exceeding normothermic Tb in three larger birds that use gular flutter, thought to provide the basis for pronounced evaporative cooling capacity and heat tolerance. We quantified Tb, evaporative water loss (EWL) and resting metabolic rate (RMR) in the ∼170-g Namaqua sandgrouse (Pterocles namaqua), ∼430-g spotted thick-knee (Burhinus capensis) and ∼670-g spotted eagle-owl (Bubo africanus), using flow-through respirometry and a stepped Tair profile with very low chamber humidities. All three species tolerated Tair of 56–60°C before the onset of severe hyperthermia, with maximum Tb of 43.2°C, 44.3°C, and 44.2°C in sandgrouse, thick-knees and eagle-owls, respectively. Evaporative scope (i.e., maximum EWL/minimum thermoneutral EWL) was 7.4 in sandgrouse, 12.9 in thick-knees and 7.8 in eagle-owls. The relationship between RMR and Tair varied substantially among species: whereas thick-knees and eagle-owls showed clear upper critical limits of thermoneutrality above which RMR increased rapidly and linearly, sandgrouse did not. Maximum evaporative heat loss/metabolic heat production ranged from 2.8 (eagle-owls) to 5.5 (sandgrouse), the latter the highest avian value yet reported. Our data reveal some larger species with gular flutter possess pronounced evaporative cooling capacity and heat tolerance and, when taken together with published data, show thermoregulatory performance varies widely among species larger than 250 g. Our data for Namaqua sandgrouse reveal unexpectedly pronounced variation in the metabolic costs of evaporative cooling within the genus Pterocles.


2021 ◽  
Vol 224 (13) ◽  
Author(s):  
Emily S. Choy ◽  
Ryan S. O'Connor ◽  
H. Grant Gilchrist ◽  
Anna L. Hargreaves ◽  
Oliver P. Love ◽  
...  

ABSTRACT The Arctic is warming at approximately twice the global rate, with well-documented indirect effects on wildlife. However, few studies have examined the direct effects of warming temperatures on Arctic wildlife, leaving the importance of heat stress unclear. Here, we assessed the direct effects of increasing air temperatures on the physiology of thick-billed murres (Uria lomvia), an Arctic seabird with reported mortalities due to heat stress while nesting on sun-exposed cliffs. We used flow-through respirometry to measure the response of body temperature, resting metabolic rate, evaporative water loss and evaporative cooling efficiency (the ratio of evaporative heat loss to metabolic heat production) in murres while experimentally increasing air temperature. Murres had limited heat tolerance, exhibiting: (1) a low maximum body temperature (43.3°C); (2) a moderate increase in resting metabolic rate relative that within their thermoneutral zone (1.57 times); (3) a small increase in evaporative water loss rate relative that within their thermoneutral zone (1.26 times); and (4) a low maximum evaporative cooling efficiency (0.33). Moreover, evaporative cooling efficiency decreased with increasing air temperature, suggesting murres were producing heat at a faster rate than they were dissipating it. Larger murres also had a higher rate of increase in resting metabolic rate and a lower rate of increase in evaporative water loss than smaller murres; therefore, evaporative cooling efficiency declined with increasing body mass. As a cold-adapted bird, murres' limited heat tolerance likely explains their mortality on warm days. Direct effects of overheating on Arctic wildlife may be an important but under-reported impact of climate change.


Author(s):  
Matthew J. Noakes ◽  
Andrew E. McKechnie ◽  
R.M. Brigham

We tested the hypothesis that interspecific variation in chiropteran heat tolerance and evaporative cooling capacity is correlated with day-roost microclimates, using three vespertilionid bats that occur sympatrically during summer in Saskatchewan, Canada. We predicted that hoary bats (Lasiurus cinereus Palisot de Beauvois, 1796; ~ 22 g) would have higher heat tolerance than little brown (Myotis lucifugus Le Conte, 1831; ~ 7 g) and silver-haired bats (Lasionycteris noctivagans Le Conte, 1831; ~ 13 g), as the latter two species roost in tree crevices/cavities that are more thermally buffered than the foliage roosts of hoary bats. We measured core body temperature (Tb; passive integrated transponder tags), evaporative water loss and resting metabolic rate (flow-through respirometry), while exposing individuals to a stepped profile of increasing air temperature (Ta) from ~ 30 °C in ~ 2 °C increments. Experiments were terminated when individuals became hyperthermic (Tb ≈ 42.5 °C), with maximum Ta (Ta,max) ranging from 42.0 °C – 49.7 °C. As predicted, hoary bats had the highest heat tolerance and evaporative cooling capacity, reaching Ta,max ~ 2.4 °C and 1.2 °C higher than little brown and silver-haired bats, respectively. Our results are consistent with the hypothesis that heat tolerance of bats is correlated with roost microclimates, although interspecific variation in body mass and phylogeny may confound these conclusions.


2013 ◽  
Vol 827 ◽  
pp. 298-301
Author(s):  
Jian Zhang

The direct evaporative cooling conditioner experimental research is carried out in this paper. Analyze the influence of inlet air dry ball temperature and relative humidity to air conditioner cooling capacity and cooling efficiency, which has certain guiding significance to improve the direct evaporative cooling air conditioner performance.


2018 ◽  
Author(s):  
Ryan S. O’Connor ◽  
Ben Smit ◽  
William A. Talbot ◽  
Alexander R. Gerson ◽  
R. Mark Brigham ◽  
...  

AbstractEvaporative cooling is a prerequisite for avian occupancy of hot, arid environments, and is the only avenue of heat dissipation when air temperatures (Ta) exceed body temperature (Tb). Whereas diurnal birds can potentially rehydrate throughout the day, nocturnal species typically forgo drinking between sunrise and sunset. We hypothesized that nocturnal birds have evolved reduced rates of evaporative water loss (EWL) and more economical evaporative cooling mechanisms than those of diurnal species that permit them to tolerate extended periods of intense heat without becoming lethally dehydrated. We used phylogenetically-informed regressions to compare EWL and evaporative cooling efficiency (ratio of evaporative heat loss [EHL] and metabolic heat production [MHP]; EHL/MHP) among nocturnal and diurnal birds at high Ta. We analyzed variation in three response variables: 1) slope of EWL at Tabetween 40 and 46°C, 2) EWL at Ta= 46°C, and 3) EHL/MHP at Ta= 46°C. Nocturnality emerged as a weak, negative predictor, with nocturnal species having slightly shallower slopes and reduced EWL compared to diurnal species of similar mass. In contrast, nocturnal activity was positively correlated with EHL/MHP, indicating a greater capacity for evaporative cooling in nocturnal birds. However, our analysis also revealed conspicuous differences among nocturnal taxa. Caprimulgids and Australian-owlet nightjars had shallower slopes and reduced EWL compared to similarly-sized diurnal species, whereas owls had EWL rates comparable to diurnal species. Consequently, our results did not unequivocally demonstrate more economical cooling among nocturnal birds. Owls predominately select refugia with cooler microclimates, but the more frequent and intense heat waves forecast for the 21stcentury may increase microclimate temperatures and the necessity for active heat dissipation, potentially increasing owls’ vulnerability to dehydration and hyperthermia.


2013 ◽  
Vol 389 ◽  
pp. 1085-1088 ◽  
Author(s):  
Jian Zhang

t focuses on the test and analysis of running conditions for the air conditioner and the functional segments at all levels in this paper, backed by the direct evaporative cooling air conditioning units experiment table. Analyze the influence of inlet air dry ball temperature and relative humidity to air conditioner cooling capacity and cooling efficiency, which has certain guiding significance to improve the direct evaporative cooling air conditioner performance.


2022 ◽  
Vol 1217 (1) ◽  
pp. 012016
Author(s):  
Z Hassan ◽  
M S Misaran ◽  
N J Siambun ◽  
M Adzrie

Abstract This experimental study aimed to determine the effect of airflow velocity on the performance of a direct evaporative cooling system. Rectangular-shaped honeycomb cooling pads with a length of 34 cm, a width of 25 cm, and a thickness of 3.5 cm are used as cooling media. The main parameters of the study are low air velocity (2.3 ms−1), medium (3.2 ms−1), and high velocity (3.7 ms−1). The data collected include dry bulb temperature, wet bulb temperature, output air temperature, input and output air velocity, input and output humidity, and solar radiation. These data are used to determine saturation efficiency, cooling capacity, temperature decreases, and feasibility index. The experimental results are presented in the form of tables and graphs and analysed based on existing theories. The results showed that the evaporative cooling system could produce output temperatures up to 27.5°C with input 31.4°C at low airspeed, 27.97°C with input 31.47oC at medium speed, and 27.7°C with input 31.30°C at high air speed. It was concluded that a low airflow rate would add to the cooling efficiency, and the higher the airflow rate, the lower the cooling efficiency. The results showed that evaporative cooling is achievable with a feasibility index of 19.89 ≤ F*≤ 20.67. The results also affirmed that cooling capability is higher where the feasibility indexes are comparatively low.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anaïs Pessato ◽  
Andrew E. McKechnie ◽  
Katherine L. Buchanan ◽  
Mylene M. Mariette

Abstract Animals thriving in hot deserts rely on extraordinary adaptations and thermoregulatory capacities to cope with heat. Uncovering such adaptations, and how they may be favoured by selection, is essential for predicting climate change impacts. Recently, the arid-adapted zebra finch was discovered to program their offspring’s development for heat, by producing ‘heat-calls’ during incubation in hot conditions. Intriguingly, heat-calls always occur during panting; and, strikingly, avian evaporative cooling mechanisms typically involve vibrating an element of the respiratory tract, which could conceivably produce sound. Therefore, we tested whether heat-call emission results from a particular thermoregulatory mechanism increasing the parent’s heat tolerance. We repeatedly measured resting metabolic rate, evaporative water loss (EWL) and heat tolerance in adult wild-derived captive zebra finches (n = 44) at increasing air temperatures up to 44 °C. We found high within-individual repeatability in thermoregulatory patterns, with heat-calling triggered at an individual-specific stage of panting. As expected for thermoregulatory mechanisms, both silent panting and heat-calling significantly increased EWL. However, only heat-calling resulted in greater heat tolerance, demonstrating that “vocal panting” brings a thermoregulatory benefit to the emitter. Our findings therefore not only improve our understanding of the evolution of passerine thermal adaptations, but also highlight a novel evolutionary precursor for acoustic signals.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3061 ◽  
Author(s):  
Shazia Noor ◽  
Hadeed Ashraf ◽  
Muhammad Sultan ◽  
Zahid Mahmood Khan

This study provides comprehensive details of evaporative cooling options for building air-conditioning (AC) in Multan (Pakistan). Standalone evaporative cooling and standalone vapor compression AC (VCAC) systems are commonly used in Pakistan. Therefore, seven AC system configurations comprising of direct evaporative cooling (DEC), indirect evaporative cooling (IEC), VCAC, and their possible combinations, are explored for the climatic conditions of Multan. The study aims to explore the optimum AC system configuration for the building AC from the viewpoints of cooling capacity, system performance, energy consumption, and CO2 emissions. A simulation model was designed in DesignBuilder and simulated using EnergyPlus in order to optimize the applicability of the proposed systems. The standalone VCAC and hybrid IEC-VCAC & IEC-DEC-VCAC system configurations could achieve the desired human thermal comfort. The standalone DEC resulted in a maximum COP of 4.5, whereas, it was 2.1 in case of the hybrid IEC-DEC-VCAC system. The hybrid IEC-DEC-VCAC system achieved maximum temperature gradient (21 °C) and relatively less CO2 emissions as compared to standalone VCAC. In addition, it provided maximum cooling capacity (184 kW for work input of 100 kW), which is 85% higher than the standalone DEC system. Furthermore, it achieved neutral to slightly cool human thermal comfort i.e., 0 to −1 predicted mean vote and 30% of predicted percentage dissatisfied. Thus, the study concludes the hybrid IEC-DEC-VCAC as an optimum configuration for building AC in Multan.


Sign in / Sign up

Export Citation Format

Share Document