scholarly journals Brain network segregation and integration during an epoch-related working memory fMRI experiment

2018 ◽  
Author(s):  
Peter Fransson ◽  
Björn C. Schiffler ◽  
William Hedley Thompson

AbstractThe characterization of brain subnetwork segregation and integration has previously focused on changes that are detectable at the level of entire sessions or epochs of imaging data. In this study, we applied time-varying functional connectivity analysis together with temporal network theory to calculate point-by-point estimates in subnetwork segregation and integration during an epoch-based (2-back, 0-back, baseline) working memory fMRI experiment as well as during resting-state. This approach allowed us to follow task-related changes in subnetwork segregation and integration at a high temporal resolution. At a global level, the cognitively more taxing 2-back epochs elicited an overall stronger response of integration between subnetworks compared to the 0-back epochs. Moreover, the visual and fronto-parietal subnetworks displayed characteristic and distinct temporal profiles of segregation and integration during the 0- and 2-back epochs. During the interspersed epochs of baseline, many subnetworks, including the default mode, visual, fronto-parietal, cingulo-opercular and dorsal attention subnetworks showed pronounced increases in segregation. Using a drift diffusion model we show that the response time for the 2-back trials are correlated with integration for the fronto-parietal subnetwork and correlated with segregation for the visual subnetwork. Our results elucidate the fast-evolving events with regard to subnetwork integration and segregation that occur in an epoch-related task fMRI experiment. Our findings suggest that minute changes in subnetwork integration are of importance for task performance.

2021 ◽  
Author(s):  
Mads Lund Pedersen ◽  
Dag Alnæs ◽  
Dennis van der Meer ◽  
Sara Fernandez ◽  
Pierre Berthet ◽  
...  

Background. Cognitive dysfunction is common in mental disorders and represents a potential risk factor in childhood. The nature and extent of associations between childhood cognitive function and polygenic risk for mental disorders is unclear. We applied computational modeling to gain insight into mechanistic processes underlying decision making and working memory in childhood and their associations with PRS for mental disorders and comorbid cardiometabolic diseases. Methods. We used the drift diffusion model to infer latent computational processes underlying decision-making and working memory during the N-back task in 3707 children aged 9-10 from the ABCD Study. SNP-based heritability was estimated for cognitive phenotypes, including computational parameters, aggregated N-back task performance and neurocognitive assessments. PRS was calculated for Alzheimer’s disease (AD), bipolar disorder, coronary artery disease (CAD), major depressive disorder, obsessive-compulsive disorder, schizophrenia and type 2 diabetes. Results. Heritability estimates of cognitive phenotypes ranged from 12 to 39%. Bayesian mixed models revealed that slower accumulation of evidence was associated with higher PRS for CAD and schizophrenia. Longer non-decision time was associated with higher PRS for AD and lower PRS for CAD. Narrower decision threshold was associated with higher PRS for CAD. Load-dependent effects on non-decision time and decision threshold were associated with PRS for AD and CAD, respectively. Aggregated neurocognitive test scores were not associated with PRS for any of the mental or cardiometabolic phenotypes.Conclusions. We identified distinct associations between computational cognitive processes to genetic risk for mental illness and cardiometabolic disease, which could represent childhood cognitive risk factors.


NeuroImage ◽  
2018 ◽  
Vol 178 ◽  
pp. 147-161 ◽  
Author(s):  
Peter Fransson ◽  
Björn C. Schiffler ◽  
William Hedley Thompson

2020 ◽  
Author(s):  
Rachel Rac-Lubashevsky ◽  
Michael J Frank

Adaptive cognitive-control is achieved through a hierarchical cortico-striatal gating system that supports selective updating, maintenance, and retrieval of useful cognitive and motor information. Here, we developed a novel task that independently manipulated selective gating operations of working-memory (input), from working-memory (output), and in response (motor) and tested the neural dynamics and computational principles that support them. Increases in gating demands, captured by gate switches, were expressed by distinct EEG correlates at each gating level that evolved dynamically in partially overlapping time windows. EEG decoding analysis further showed that neural indexes of working-memory (category) and motor (action) representations were prioritized particularly when the corresponding gate was switching. Finally, the control mechanisms involved in gate switches were quantified by the drift diffusion model, showing elevated motor decision threshold in all gating levels. Together these results support the notion that cognitive gating operations scaffold on top of mechanisms involved in motor gating.


2021 ◽  
Vol 17 (6) ◽  
pp. e1008971
Author(s):  
Rachel Rac-Lubashevsky ◽  
Michael J. Frank

Adaptive cognitive-control involves a hierarchical cortico-striatal gating system that supports selective updating, maintenance, and retrieval of useful cognitive and motor information. Here, we developed a task that independently manipulates selective gating operations into working-memory (input gating), from working-memory (output gating), and of responses (motor gating) and tested the neural dynamics and computational principles that support them. Increases in gating demands, captured by gate switches, were expressed by distinct EEG correlates at each gating level that evolved dynamically in partially overlapping time windows. Further, categorical representations of specific maintained items and of motor responses could be decoded from EEG when the corresponding gate was switching, thereby linking gating operations to prioritization. Finally, gate switching at all levels was related to increases in the motor decision threshold as quantified by the drift diffusion model. Together these results support the notion that cognitive gating operations scaffold on top of mechanisms involved in motor gating.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rossana Mastrandrea ◽  
Fabrizio Piras ◽  
Andrea Gabrielli ◽  
Nerisa Banaj ◽  
Guido Caldarelli ◽  
...  

AbstractNetwork neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization’s basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.


2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Geoffrey W. Peitz ◽  
Elisabeth A. Wilde ◽  
Ramesh Grandhi

Magnetoencephalography (MEG) is a functional brain imaging technique with high temporal resolution compared with techniques that rely on metabolic coupling. MEG has an important role in traumatic brain injury (TBI) research, especially in mild TBI, which may not have detectable features in conventional, anatomical imaging techniques. This review addresses the original research articles to date that have reported on the use of MEG in TBI. Specifically, the included studies have demonstrated the utility of MEG in the detection of TBI, characterization of brain connectivity abnormalities associated with TBI, correlation of brain signals with post-concussive symptoms, differentiation of TBI from post-traumatic stress disorder, and monitoring the response to TBI treatments. Although presently the utility of MEG is mostly limited to research in TBI, a clinical role for MEG in TBI may become evident with further investigation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas A. Johnson ◽  
Ville Paakinaho ◽  
Sohyoung Kim ◽  
Gordon L. Hager ◽  
Diego M. Presman

AbstractA widely regarded model for glucocorticoid receptor (GR) action postulates that dimeric binding to DNA regulates unfavorable metabolic pathways while monomeric receptor binding promotes repressive gene responses related to its anti-inflammatory effects. This model has been built upon the characterization of the GRdim mutant, reported to be incapable of DNA binding and dimerization. Although quantitative live-cell imaging data shows GRdim as mostly dimeric, genomic studies based on recovery of enriched half-site response elements suggest monomeric engagement on DNA. Here, we perform genome-wide studies on GRdim and a constitutively monomeric mutant. Our results show that impairing dimerization affects binding even to open chromatin. We also find that GRdim does not exclusively bind half-response elements. Our results do not support a physiological role for monomeric GR and are consistent with a common mode of receptor binding via higher order structures that drives both the activating and repressive actions of glucocorticoids.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Genís Prat-Ortega ◽  
Klaus Wimmer ◽  
Alex Roxin ◽  
Jaime de la Rocha

AbstractPerceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.


2019 ◽  
Vol 31 (7) ◽  
pp. 1079-1090 ◽  
Author(s):  
Peter S. Whitehead ◽  
Mathilde M. Ooi ◽  
Tobias Egner ◽  
Marty G. Woldorff

The contents of working memory (WM) guide visual attention toward matching features, with visual search being faster when the target and a feature of an item held in WM spatially overlap (validly cued) than when they occur at different locations (invalidly cued). Recent behavioral studies have indicated that attentional capture by WM content can be modulated by cognitive control: When WM cues are reliably helpful to visual search (predictably valid), capture is enhanced, but when reliably detrimental (predictably invalid), capture is attenuated. The neural mechanisms underlying this effect are not well understood, however. Here, we leveraged the high temporal resolution of ERPs time-locked to the onset of the search display to determine how and at what processing stage cognitive control modulates the search process. We manipulated predictability by grouping trials into unpredictable (50% valid/invalid) and predictable (100% valid, 100% invalid) blocks. Behavioral results confirmed that predictability modulated WM-related capture. Comparison of ERPs to the search arrays showed that the N2pc, a posteriorly distributed signature of initial attentional orienting toward a lateralized target, was not impacted by target validity predictability. However, a longer latency, more anterior, lateralized effect—here, termed the “contralateral attention-related negativity”—was reduced under predictable conditions. This reduction interacted with validity, with substantially greater reduction for invalid than valid trials. These data suggest cognitive control over attentional capture by WM content does not affect the initial attentional-orienting process but can reduce the need to marshal later control mechanisms for processing relevant items in the visual world.


2015 ◽  
Vol 122 (2) ◽  
pp. 312-336 ◽  
Author(s):  
Brandon M. Turner ◽  
Leendert van Maanen ◽  
Birte U. Forstmann

Sign in / Sign up

Export Citation Format

Share Document