scholarly journals Lineage tracing axial progenitors using Nkx1.2CreERT2 mice defines their trunk and tail contributions

2018 ◽  
Author(s):  
Aida Rodrigo Albors ◽  
Pamela A. Halley ◽  
Kate G. Storey

AbstractThe vertebrate body forms by continuous generation of new tissue from progenitors at the posterior end of the embryo. In mice, these axial progenitors initially reside in the epiblast, from where they form the trunk; and later relocate to the chordo-neural hinge of the tail bud to form the tail. Among them, a small group of bipotent neuromesodermal progenitors (NMPs) are thought to generate the spinal cord and paraxial mesoderm to the end of axis elongation. The study of these progenitors, however, has proven challenging in vivo due to their small numbers and dynamic nature, and the lack of a unique molecular marker to identify them. Here, we report the generation of the Nkx1.2CreERT2 transgenic mouse line in which the endogenous Nkx1.2 promoter drives tamoxifen-inducible CreERT2 recombinase. We show that Nkx1.2CreERT2 targets axial progenitors, including NMPs and early neural and mesodermal progenitors. Using a YFP reporter, we demonstrate that Nkx1.2-expressing epiblast cells contribute to all three germ layers, mostly neuroectoderm and mesoderm excluding notochord; and continue contributing neural and paraxial mesoderm tissues from the tail bud. This study identifies the Nkx1.2-expressing cell population as the source of most trunk and tail tissues in the mouse; and provides a key tool to genetically label and manipulate this progenitor population in vivo.

genesis ◽  
2006 ◽  
Vol 44 (6) ◽  
pp. 277-286 ◽  
Author(s):  
Céline Souilhol ◽  
Sarah Cormier ◽  
Marie Monet ◽  
Sandrine Vandormael-Pournin ◽  
Anne Joutel ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhuohao He ◽  
Jennifer D. McBride ◽  
Hong Xu ◽  
Lakshmi Changolkar ◽  
Soo-jung Kim ◽  
...  

AbstractThe deposition of pathological tau is a common feature in several neurodegenerative tauopathies. Although equal ratios of tau isoforms with 3 (3R) and 4 (4R) microtubule-binding repeats are expressed in the adult human brain, the pathological tau from different tauopathies have distinct isoform compositions and cell type specificities. The underlying mechanisms of tauopathies are unknown, partially due to the lack of proper models. Here, we generate a new transgenic mouse line expressing equal ratios of 3R and 4R human tau isoforms (6hTau mice). Intracerebral injections of distinct human tauopathy brain-derived tau strains into 6hTau mice recapitulate the deposition of pathological tau with distinct tau isoform compositions and cell type specificities as in human tauopathies. Moreover, through in vivo propagation of these tau strains among different mouse lines, we demonstrate that the transmission of distinct tau strains is independent of strain isoform compositions, but instead intrinsic to unique pathological conformations.


2020 ◽  
Author(s):  
David O. Dias ◽  
Jannis Kalkitsas ◽  
Yildiz Kelahmetoglu ◽  
Cynthia P. Estrada ◽  
Jemal Tatarishvili ◽  
...  

AbstractFibrotic scar tissue limits central nervous system regeneration in adult mammals. The extent of fibrotic tissue generation and distribution of stromal cells across different lesions in the brain and spinal cord has not been systematically investigated in mice and humans. Furthermore, it is unknown whether scar-forming stromal cells have the same origin throughout the central nervous system and in different types of lesions. In the current study, we compared fibrotic scarring in human pathological tissue and corresponding mouse models of penetrating and non-penetrating spinal cord injury, traumatic brain injury, ischemic stroke, multiple sclerosis and glioblastoma. We show that the extent and distribution of stromal cells are specific to the type of lesion and, in most cases, similar between mice and humans. Employing in vivo lineage tracing, we report that in all mouse models developing fibrotic tissue, the primary source of scar-forming fibroblasts is a discrete subset of perivascular cells, termed type A pericytes.We uncover pericyte-derived fibrosis as a conserved mechanism that may be explored as a therapeutic target to improve recovery after central nervous system lesions.


2003 ◽  
Vol 5 (S1) ◽  
Author(s):  
R Attar ◽  
C Cullinan ◽  
C-P Ho ◽  
M Swerdel ◽  
J Dell ◽  
...  

2020 ◽  
Author(s):  
Michela Croce ◽  
Patrizia Damonte ◽  
Monica Morini ◽  
Simona Pigozzi ◽  
Laura Chiossone ◽  
...  

Abstract Arginine metabolism plays a significant role in regulating cell function, affecting tumor growth and metastatization. To study the effect of the arginine-catabolizing enzyme Arginase1 (ARG1) on tumor microenvironment, we generated a mouse model of mammary carcinogenesis by crossbreeding a transgenic mouse line overexpressing ARG1 in macrophages (FVBArg+/+) with the MMTV-Neu mouse line (FVBNeu+/+). This double transgenic line (FVBArg+/−;Neu+/+) showed a significant shortening in mammary tumor latency, and an increase in the number of mammary nodules. Transfer of tumor cells from FVBNeu+/+ into either FVB wild type or FVBArg+/+ mice resulted in increase regulatory T cells in the tumor infiltrate, suggestive of an impaired antitumor immune response. However, we also found increased frequency of tumor stem cells in tumors from FVBArg+/−;Neu+/+ transgenic compared with FVBNeu+/+ mice, suggesting that increased arginine metabolism in mammary tumor microenvironment may supports the cancer stem cells niche. We provide in vivo evidence of a novel, yet unexploited, mechanism through which ARG1 may contribute to tumor development.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0128198 ◽  
Author(s):  
Krung Phiwpan ◽  
Jie Guo ◽  
Wei Zhang ◽  
Tanyu Hu ◽  
Bhargavi M. Boruah ◽  
...  

Author(s):  
Victor A Ruthig ◽  
Tetsuhiro Yokonishi ◽  
Matthew B Friedersdorf ◽  
Sofia Batchvarova ◽  
Josiah Hardy ◽  
...  

Abstract In vertebrates, the RNA binding protein (RBP) Dead End 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the pre-meiotic spermatogonial population. Utilizing the GFP-tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.


2020 ◽  
Author(s):  
Mohammed R Shaker ◽  
Ju-Hyun Lee ◽  
Kyung Hyun Kim ◽  
Veronica Jihyun Kim ◽  
Joo Yeon Kim ◽  
...  

ABSTRACTDuring vertebrate development, the posterior end of the embryo progressively elongates in a head-to-tail direction to form the body plan. Recent lineage tracing experiments revealed that bi-potent progenitors, called neuromesodermal progenitors (NMPs), produce caudal neural and mesodermal tissues during axial elongation. However, their precise location and contribution to spinal cord development remain elusive. Here we used NMP-specific markers (Sox2 and BraT) and a genetic lineage tracing system to localize NMP progeny in vivo. NMPs were initially located at the tail tip, but were later found in the caudal neural tube, which is a unique feature of mouse development. In the neural tube, they produced neural stem cells (NSCs) and contributed to the spinal cord gradually along the AP axis during axial elongation. Interestingly, NMP-derived NSCs preferentially contributed to the ventral side first and later to the dorsal side at the lumbar spinal cord level, which may be associated with atypical junctional neurulation in mice. Our current observations detail the contribution of NMP progeny to spinal cord elongation and provide insights into how different species uniquely execute caudal morphogenesis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kazuya Kuboyama ◽  
Takafumi Inoue ◽  
Yuki Hashimotodani ◽  
Takuya Itoh ◽  
Tohsuke Suzuki ◽  
...  

Abstract Dendritic spines function as microcompartments that can modify the efficiency of their associated synapses. Here, we analyzed stimulus-dependent molecular changes in spines. The F-actin capping protein CapZ accumulates in parts of dendritic spines within regions where long-term potentiation has been induced. We produced a transgenic mouse line, AiCE-Tg, in which CapZ tagged with enhanced green fluorescence protein (EGFP-CapZ) is expressed. Twenty minutes after unilateral visual or somatosensory stimulation in AiCE-Tg mice, relative EGFP-CapZ signal intensification was seen in a subset of dendritic spines selectively in stimulated-side cortices; this right-left difference was abolished by NMDA receptor blockade. Immunolabeling of α-actinin, a PSD-95 binding protein that can recruit AMPA receptors, showed that the α-actinin signals colocalized more frequently in spines with the brightest EGFP-CapZ signals (top 100) than in spines with more typical EGFP-CapZ signal strength (top 1,000). This stimulus-dependent in vivo redistribution of EGFP-CapZ represents a novel molecular event with plasticity-like characteristics, and bright EGFP-CapZ in AiCE-Tg mice make high-CapZ spines traceable in vivo and ex vivo. This mouse line has the potential to be used to reveal sequential molecular events, including synaptic tagging, and to relate multiple types of plasticity in these spines, extending knowledge related to memory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document