scholarly journals Atomic model of microtubule-bound tau

2018 ◽  
Author(s):  
Elizabeth H. Kellogg ◽  
Nisreen M.A. Hejab ◽  
Simon Poepsel ◽  
Kenneth H. Downing ◽  
Frank DiMaio ◽  
...  

AbstractTau is a developmentally regulated protein found in axons, whose physiological role is to stabilize and bundle microtubules (MTs). Hyper-phosphorylation of tau is thought to cause its detachment from MTs and subsequent aggregation into pathological fibrils that have been implicated in Alzheimer’s disease pathogenesis. Despite its known MT binding role, there is no consensus regarding which tau residues are crucial for tau-MT interactions, where on the MT tau binds, and how binding results in MT stabilization. We have used cryo-EM to visualize the interaction of different tau constructs with MTs at high resolution (3.2-4.8 Å) and used computational approaches to generate atomic models of tau-tubulin interactions. Our work shows that the highly conserved tubulin-binding repeats within tau adopt very similar structures in their interactions with the MT. Each tau repeat binds the MT exterior and adopts an extended structure along the crest of the protofilament (PF), interacting with both α- and β-tubulin, thus stabilizing the interface between tubulin dimers. Our structures agree with and explain previous biochemical data concerning the effect of phosphorylation on MT affinity and lead to a model in which tau repeats bind in tandem along a PF, tethering together tubulin dimers and stabilizing longitudinal polymerization interfaces. These structural findings could establish a basis of future treatments aiming at the selective stabilization of tau-MT interactions.

Science ◽  
2018 ◽  
Vol 360 (6394) ◽  
pp. 1242-1246 ◽  
Author(s):  
Elizabeth H. Kellogg ◽  
Nisreen M. A. Hejab ◽  
Simon Poepsel ◽  
Kenneth H. Downing ◽  
Frank DiMaio ◽  
...  

Tau is a developmentally regulated axonal protein that stabilizes and bundles microtubules (MTs). Its hyperphosphorylation is thought to cause detachment from MTs and subsequent aggregation into fibrils implicated in Alzheimer’s disease. It is unclear which tau residues are crucial for tau-MT interactions, where tau binds on MTs, and how it stabilizes them. We used cryo–electron microscopy to visualize different tau constructs on MTs and computational approaches to generate atomic models of tau-tubulin interactions. The conserved tubulin-binding repeats within tau adopt similar extended structures along the crest of the protofilament, stabilizing the interface between tubulin dimers. Our structures explain the effect of phosphorylation on MT affinity and lead to a model of tau repeats binding in tandem along protofilaments, tethering together tubulin dimers and stabilizing polymerization interfaces.


FEBS Letters ◽  
2010 ◽  
Vol 584 (16) ◽  
pp. 3533-3539 ◽  
Author(s):  
Lu Lu ◽  
Jie Nan ◽  
Wei Mi ◽  
Lan-Fen Li ◽  
Chun-Hong Wei ◽  
...  

2002 ◽  
Vol 115 (5) ◽  
pp. 941-948 ◽  
Author(s):  
Guylaine Hoffner ◽  
Pascal Kahlem ◽  
Philippe Djian

Huntington's disease results from an expansion of a series of glutamine repeats in the protein huntingtin. We have discovered from immunopurification studies that huntingtin combines specifically with the β subunit of tubulin. This binding explains why huntingtin can be shown on assembled microtubules by electron microscopy. Immunostaining shows that most of the huntingtin in the cytoplasm is associated with microtubules. Huntingtin is particularly abundant in the perinuclear region, where it is also associated with microtubules and in the centrosomal region, where it co-localizes withγ-tubulin. In Huntington's disease, inclusions are often nuclear or perinuclear. Since the perinuclear concentration of huntingtin does not depend on the number of its glutamine repeats, we propose that inclusions are found in perinuclear and intranuclear locations because the β-tubulin binding property of huntingtin brings it to the perinuclear region, from which it readily gains access to the nucleus. The mutational glutamine expansion then promotes insolubility and results in an inclusion.


Cell Cycle ◽  
2011 ◽  
Vol 10 (19) ◽  
pp. 3387-3396 ◽  
Author(s):  
Adrian Begaye ◽  
Shana Trostel ◽  
Zhiming Zhao ◽  
Richard E. Taylor ◽  
David C. Schriemer ◽  
...  

2005 ◽  
Vol 280 (23) ◽  
pp. 22356-22364 ◽  
Author(s):  
Ruby H. P. Law ◽  
James A. Irving ◽  
Ashley M. Buckle ◽  
Katya Ruzyla ◽  
Marguerite Buzza ◽  
...  

Maspin is a serpin that acts as a tumor suppressor in a range of human cancers, including tumors of the breast and lung. Maspin is crucial for development, because homozygous loss of the gene is lethal; however, the precise physiological role of the molecule is unclear. To gain insight into the function of human maspin, we have determined its crystal structure in two similar, but non-isomorphous crystal forms, to 2.1- and 2.8-Å resolution, respectively. The structure reveals that maspin adopts the native serpin fold in which the reactive center loop is expelled fully from the A β-sheet, makes minimal contacts with the core of the molecule, and exhibits a high degree of flexibility. A buried salt bridge unique to maspin orthologues causes an unusual bulge in the region around the D and E α-helices, an area of the molecule demonstrated in other serpins to be important for cofactor recognition. Strikingly, the structural data reveal that maspin is able to undergo conformational change in and around the G α-helix, switching between an open and a closed form. This change dictates the electrostatic character of a putative cofactor binding surface and highlights this region as a likely determinant of maspin function. The high resolution crystal structure of maspin provides a detailed molecular framework to elucidate the mechanism of function of this important tumor suppressor.


2020 ◽  
Vol 133 (17) ◽  
pp. jcs249805 ◽  
Author(s):  
Julie Craft Van De Weghe ◽  
J. Aaron Harris ◽  
Tomohiro Kubo ◽  
George B. Witman ◽  
Karl F. Lechtreck

ABSTRACTTubulin enters the cilium by diffusion and motor-based intraflagellar transport (IFT). However, the respective contribution of each route in providing tubulin for axonemal assembly remains unknown. Using Chlamydomonas, we attenuated IFT-based tubulin transport of GFP–β-tubulin by altering the IFT74N–IFT81N tubulin-binding module and the C-terminal E-hook of tubulin. E-hook-deficient GFP–β-tubulin was incorporated into the axonemal microtubules, but its transport frequency by IFT was reduced by ∼90% in control cells and essentially abolished when the tubulin-binding site of IFT81 was incapacitated. Despite the strong reduction in IFT, the proportion of E-hook-deficient GFP–β-tubulin in the axoneme was only moderately reduced. In vivo imaging showed more GFP–β-tubulin particles entering cilia by diffusion than by IFT. Extrapolated to endogenous tubulin, the data indicate that diffusion provides most of the tubulin required for axonemal assembly. We propose that IFT of tubulin is nevertheless needed for ciliogenesis, because it augments the tubulin pool supplied to the ciliary tip by diffusion, thus ensuring that free tubulin there is maintained at the critical concentration for plus-end microtubule assembly during rapid ciliary growth.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 1544
Author(s):  
John R. Apps ◽  
J. Ciaran Hutchinson ◽  
Susan Shelmerdine ◽  
Alex Virasami ◽  
Eduard Winter ◽  
...  

This manuscript describes the study of two cases of craniopharyngioma, which have been examined repeatedly over three separate centuries. This includes analysis by Josef Engel in 1839, who sought to uncover the physiological role of the pituitary gland; Jacob Erdheim in 1904, who initially described the disease we now call craniopharyngioma, and recent high resolution MRI and micro-CT imaging and attempted DNA analyses of the tumours. The cases highlight how, rightly or wrongly, our interpretation of data is shaped by the technologies, methodologies and prevailing theories of a given time.


Development ◽  
1992 ◽  
Vol 115 (3) ◽  
pp. 785-790 ◽  
Author(s):  
C. Anjard ◽  
S. Pinaud ◽  
R.R. Kay ◽  
C.D. Reymond

The Dd PK2 gene codes for a putative protein of 648 amino acids with a C-terminal half sharing high homology with protein kinase A catalytic subunits from other organisms. In order to find out more about the physiological role of the Dd PK2 kinase, its gene, and a version having a frame shift mutation in the middle of the catalytic region, were overexpressed in developing Dictyostelium cells. Both the intact gene (K-) and the frame shift mutant (Kdel-) caused rapid development with spores formed in 16–18 hours compared to the 24 hours required by their parent. This result was confirmed by the pattern of expression of some developmentally regulated genes. Other rapid developing strains (rde) are activated in the cAMP second messenger system. Both K- and Kdel-containing strains have lower cAMP levels than the parental strain during late development, thus resembling rdeC mutants. K-cells (but not Kdel-cells) produced bizarre fruiting bodies with many prostrate forms. The parallel with rde mutants was confirmed by demonstrating that K-cells are able to form spores in submerged monolayer culture. Furthermore, K-cells have about four times more protein kinase A (cAPK) activity than wild-type cells. These results indicate that the N-terminal domain of Dd PK2 is sufficient to influence cAMP levels and to provoke rapid development, whereas kinase activity seems to be required for the sporogenous phenotype. The association between elevated cAPK and Dd PK2 overexpression phenotype further indicates a role for cAPK in the formation of spores.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 738-738
Author(s):  
Harald Schulze ◽  
Marei Dose ◽  
Manav Korpal ◽  
Joseph E. Italiano ◽  
Ramesh A. Shivdasani

Abstract Megakaryocytes are large cells within the bone marrow that undergo complex fragmentation to release up to thousands of virtually identical blood platelets into the periphery. Each platelet contains a characterisitic microtubule (MT) marginal band that is derived from MT filaments present in long protrusion-like intermediate structures, designated proplatelets, that are immediate precursors of platelets. These MT filaments are generated in the MK periphery, where they require massive mobilization that is supposed to be different from either normal interphase MT nucleation that commonly depends on γ-tubulin in the MT-organizing center. or from MTs in the mitotic spindle that require Ran·GTP, which is generated along condensed chromosomes by the chromatin-asociated guanine nucleotide exchange factor (GEF) RCC1. We first demonstrated that γ-tubulin is absent in most of the mature or proplatelet-forming MKs, where it is therefore unlikely to attribute to the total MT nucleation. MTs are tubular cytoskeletal structures that contain polymerized α- or β-tubulin subunits. Mammalian genomes share 5–6 β-tubulin isotypes of which β1-tubulin is the most divergent, especially in its C-terminal domain. β1-tubulin expression is restricted to late MKs and platelets, where it accounts for most of the β-tubulin in MT filaments. Its ablation in the mouse results in thrombocytopenia, spherocytosis and attenuated platelet function. We therefore sought to identify proteins that bind to β1-tubulin and performed a yeast two-hybrid screen using a MK-derived cDNA library. We identified a cytoplasmic Ran-binding protein, RanBP10, as a factor that associates with cellular MTs and unexpectedly harbors GEF activity toward Ran. Loss of RanBP10 in cultured MKs disrupts MT organization and its overexpression drives accumulation of extranuclear Ran and assembly of thick and abnormally long MTs. RanBP10 thus functions as a localized β-tubulin binding protein that harbors GEF activity toward Ran in the cytoplasm, much like RCC1 in the nucleus. Our results suggest that spatiotemporally restricted generation of Ran·GTP in the cytoplasm organizes specialized MTs required for thrombopoiesis and that RanBP10 provides a molecular link between Ran and non-centrosomal MTs.


Sign in / Sign up

Export Citation Format

Share Document