scholarly journals A network for computing value homeostasis in the human medial prefrontal cortex

2018 ◽  
Author(s):  
Keno Juechems ◽  
Jan Balaguer ◽  
Santiago Herce Castañón ◽  
María Ruz ◽  
Jill X. O’Reilly ◽  
...  

AbstractHumans and other animals make decisions in order to satisfy their goals. However, it remains unknown how neural circuits compute which of multiple possible goals should be pursued (e.g. when balancing hunger and thirst) and combine these signals with estimates of available reward alternatives. Here, humans undergoing functional magnetic resonance imaging (fMRI) accumulated two distinct assets over a sequence of trials. Financial outcomes depended on the minimum cumulate of either asset, creating a need to maintain “value homeostasis” by redressing any imbalance among the assets. BOLD signals in the dorsal anterior cingulate cortex (dACC) tracked the level of homeostatic imbalance among goals, whereas the ventromedial prefrontal cortex (vmPFC) signalled the level of homeostatic redress incurred by a choice, rather than the overall amount received. These results suggest that a network of medial frontal brain regions compute a value signal that maintains homeostatic balance among internal goals.

2006 ◽  
Vol 18 (9) ◽  
pp. 1586-1594 ◽  
Author(s):  
J. M. Moran ◽  
C. N. Macrae ◽  
T. F. Heatherton ◽  
C. L. Wyland ◽  
W. M. Kelley

This study examines whether the cognitive and affective components of self-reflection can be dissociated using functional magnetic resonance imaging. Using a simple paradigm in which subjects judged the personal relevance of personality characteristics that were either favorable (e.g., “honest”) or unfavorable (e.g., “lazy”, we found that distinct neural circuits in adjacent regions of the prefrontal cortex subserve cognitive and emotional aspects of self-reflection. The medial prefrontal cortex responded only to material that was self-descriptive, and this did not differ as a function of the valence of the trait. When material was judged to be self-relevant, the valence of the material was resolved in an adjacent region of ventral anterior cingulate. The nature of self is one of the most enduring questions in science, and researchers are now beginning to be able to decompose the neural operations that give rise to a unitary sense of self.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xia Yang ◽  
Ya-jing Meng ◽  
Yu-jie Tao ◽  
Ren-hao Deng ◽  
Hui-yao Wang ◽  
...  

Background: Alcohol dependence (AD) is a chronic recurrent brain disease that causes a heavy disease burden worldwide, partly due to high relapse rates after detoxification. Verified biomarkers are not available for AD and its relapse, although the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) may play important roles in the mechanism of addiction. This study investigated AD- and relapse-associated functional connectivity (FC) of the NAc and mPFC with other brain regions during early abstinence.Methods: Sixty-eight hospitalized early-abstinence AD male patients and 68 age- and education-matched healthy controls (HCs) underwent resting-functional magnetic resonance imaging (r-fMRI). Using the NAc and mPFC as seeds, we calculated changes in FC between the seeds and other brain regions. Over a follow-up period of 6 months, patients were measured with the Alcohol Use Disorder Identification Test (AUDIT) scale to identify relapse outcomes (AUDIT ≥ 8).Results: Thirty-five (52.24%) of the AD patients relapsed during the follow-up period. AD displayed lower FC of the left fusiform, bilateral temporal superior and right postcentral regions with the NAc and lower FC of the right temporal inferior, bilateral temporal superior, and left cingulate anterior regions with the mPFC compared to controls. Among these FC changes, lower FC between the NAc and left fusiform, lower FC between the mPFC and left cingulate anterior cortex, and smoking status were independently associated with AD. Subjects in relapse exhibited lower FC of the right cingulate anterior cortex with NAc and of the left calcarine sulcus with mPFC compared to non-relapsed subjects; both of these reductions in FC independently predicted relapse. Additionally, FC between the mPFC and right frontal superior gyrus, as well as years of education, independently predicted relapse severity.Conclusion: This study found that values of FC between selected seeds (i.e., the NAc and the mPFC) and some other reward- and/or impulse-control-related brain regions were associated with AD and relapse; these FC values could be potential biomarkers of AD or for prediction of relapse. These findings may help to guide further research on the neurobiology of AD and other addictive disorders.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Gowrishankar Ganesh ◽  
Takehiro Minamoto ◽  
Masahiko Haruno

Abstract Performance anxiety can profoundly affect motor performance, even in experts such as professional athletes and musicians. Previously, the neural mechanisms underlying anxiety-induced performance deterioration have predominantly been investigated for individual one-shot actions. Sports and music, however, are characterized by action sequences, where many individual actions are assembled to develop a performance. Here, utilizing a novel differential sequential motor learning paradigm, we first show that performance at the junctions between pre-learnt action sequences is particularly prone to anxiety. Next, utilizing functional magnetic resonance imaging (fMRI), we reveal that performance deterioration at the junctions is parametrically correlated with activity in the dorsal anterior cingulate cortex (dACC). Finally, we show that 1 Hz repetitive transcranial magnetic stimulation of the dACC attenuates the performance deterioration at the junctions. These results demonstrate causality between dACC activity and impairment of sequential motor performance due to anxiety, and suggest new intervention techniques against the deterioration.


Author(s):  
Jiameng Xu

How do our brains process and attach positive and negative value to the objects around us, the sensations we feel, and the experiences that we have? One method of examining these questions is to detect, using functional magnetic resonance imaging (fMRI), which areas of the human brain are activated when subjects are exposed to rewarding and aversive stimuli. Although many fMRI studies have concentrated on identifying a network of areas that become active in processing either reward or aversion, there is evidence of significant overlap between the “reward” and “aversion” networks, suggesting that the brain might process rewarding and aversive stimuli in a similar manner regardless of valence. Thus, a meta-analysis of fMRI studies involving rewarding and aversive stimuli was undertaken to determine the areas of the brain that are commonly and differentially activated by reward and aversion. The preliminary results indicate that regions of the prefrontal cortex, anterior cingulate cortex, amygdala, nucleus accumbens, hippocampus, and basal ganglia were commonly activated by rewarding and aversive stimuli, while areas including the insula, midcingulate cortex, and parts of the hippocampus were differentially activated. Locating such commonalities and differences might help in our understanding of how the brain ascribes value to our environment.  


2020 ◽  
Author(s):  
Ting-Peng Liang ◽  
Yuwen Li ◽  
Nai-Shing Yen ◽  
Ofir Turel ◽  
Sen-Mou Hsu

Abstract Background : Escalation of commitment is a common bias in human decision making. The present study examined (1) differences in neural recruitment for escalation and de-escalation decisions of prior investments, and (2) how the activation of these brain networks are modulated by two contextual/confounding factors: (i) responsibility, and (ii) framing of the success probabilities. Results: Imaging data were obtained from functional magnetic resonance imaging (fMRI) applied to 29 participants. The findings showed that (1) escalation decisions are faster than de-escalation decisions, (2) the corresponding network of brain regions recruited for escalation (anterior cingulate cortex, insula and precuneus) decisions differs from this recruited for de-escalation decisions (inferior and superior frontal gyri), (3) the switch from escalation to de-escalation is primarily frontal gyri dependent, and (4) activation in the anterior cingulate cortex, insula and precuneus were further increased in escalation decisions, when the outcome probabilities of the follow-up investment were positively framed; and activation in the inferior and superior frontal gyri in de-escalation decisions were increased when the outcome probabilities were negatively framed. Conclusions: Escalation and de-escalation decisions recruit different brain regions. Framing of possible outcome as positive or negative activates different brain mechanisms.


Neurosurgery ◽  
2016 ◽  
Vol 78 (6) ◽  
pp. E883-E893 ◽  
Author(s):  
Dirk De Ridder ◽  
Patrick Manning ◽  
Paul Glue ◽  
Gavin Cape ◽  
Berthold Langguth ◽  
...  

Abstract BACKGROUND AND IMPORTANCE: Alcohol dependence is related to dysfunctional brain processes, in which a genetic background and environmental factors shape brain mechanisms involved with alcohol consumption. Craving, a major component determining relapses in alcohol abuse, has been linked to abnormal brain activity. CLINICAL PRESENTATION: We report the results of a treatment-intractable, alcohol-addicted patient with associated agoraphobia and anxiety. Functional imaging studies consisting of functional magnetic resonance imaging and resting-state electroencephalogram were performed as a means to localize craving-related brain activation and for identification of a target for repetitive transcranial magnetic stimulation and implant insertion. Repetitive transcranial magnetic stimulation of the dorsal anterior cingulate cortex with a double-cone coil transiently suppressed his very severe alcohol craving for up to 6 weeks. For ongoing stimulation, 2 “back-to-back” paddle electrodes were implanted with functional magnetic resonance imaging neuronavigation guidance for bilateral dorsal anterior cingulate cortex stimulation. Using a recently developed novel stimulation design, burst stimulation, a quick improvement was obtained on craving, agoraphobia, and associated anxiety without the expected withdrawal symptoms. The patient has remained free of alcohol intake and relieved of agoraphobia and anxiety for over 18 months, associated with normalization of his alpha and beta activity on electroencephalogram in the stimulated area. He perceives a mental freedom by not being constantly focused on alcohol. CONCLUSION: This case report proposes a new pathophysiology-based target for the surgical treatment of alcohol dependence and suggests that larger studies are warranted to explore this potentially promising avenue for the treatment of intractable alcohol dependence with or without anxiety and agoraphobia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florian Bitsch ◽  
Philipp Berger ◽  
Andreas Fink ◽  
Arne Nagels ◽  
Benjamin Straube ◽  
...  

AbstractThe ability to generate humor gives rise to positive emotions and thus facilitate the successful resolution of adversity. Although there is consensus that inhibitory processes might be related to broaden the way of thinking, the neural underpinnings of these mechanisms are largely unknown. Here, we use functional Magnetic Resonance Imaging, a humorous alternative uses task and a stroop task, to investigate the brain mechanisms underlying the emergence of humorous ideas in 24 subjects. Neuroimaging results indicate that greater cognitive control abilities are associated with increased activation in the amygdala, the hippocampus and the superior and medial frontal gyrus during the generation of humorous ideas. Examining the neural mechanisms more closely shows that the hypoactivation of frontal brain regions is associated with an hyperactivation in the amygdala and vice versa. This antagonistic connectivity is concurrently linked with an increased number of humorous ideas and enhanced amygdala responses during the task. Our data therefore suggests that a neural antagonism previously related to the emergence and regulation of negative affective responses, is linked with the generation of emotionally positive ideas and may represent an important neural pathway supporting mental health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiao Lin ◽  
Jiahui Deng ◽  
Kai Yuan ◽  
Qiandong Wang ◽  
Lin Liu ◽  
...  

AbstractThe majority of smokers relapse even after successfully quitting because of the craving to smoking after unexpectedly re-exposed to smoking-related cues. This conditioned craving is mediated by reward memories that are frequently experienced and stubbornly resistant to treatment. Reconsolidation theory posits that well-consolidated memories are destabilized after retrieval, and this process renders memories labile and vulnerable to amnestic intervention. This study tests the retrieval reconsolidation procedure to decrease nicotine craving among people who smoke. In this study, 52 male smokers received a single dose of propranolol (n = 27) or placebo (n = 25) before the reactivation of nicotine-associated memories to impair the reconsolidation process. Craving for smoking and neural activity in response to smoking-related cues served as primary outcomes. Functional magnetic resonance imaging was performed during the memory reconsolidation process. The disruption of reconsolidation by propranolol decreased craving for smoking. Reactivity of the postcentral gyrus in response to smoking-related cues also decreased in the propranolol group after the reconsolidation manipulation. Functional connectivity between the hippocampus and striatum was higher during memory reconsolidation in the propranolol group. Furthermore, the increase in coupling between the hippocampus and striatum positively correlated with the decrease in craving after the reconsolidation manipulation in the propranolol group. Propranolol administration before memory reactivation disrupted the reconsolidation of smoking-related memories in smokers by mediating brain regions that are involved in memory and reward processing. These findings demonstrate the noradrenergic regulation of memory reconsolidation in humans and suggest that adjunct propranolol administration can facilitate the treatment of nicotine dependence. The present study was pre-registered at ClinicalTrials.gov (registration no. ChiCTR1900024412).


2010 ◽  
Vol 21 (7) ◽  
pp. 931-937 ◽  
Author(s):  
C. Nathan DeWall ◽  
Geoff MacDonald ◽  
Gregory D. Webster ◽  
Carrie L. Masten ◽  
Roy F. Baumeister ◽  
...  

Pain, whether caused by physical injury or social rejection, is an inevitable part of life. These two types of pain—physical and social—may rely on some of the same behavioral and neural mechanisms that register pain-related affect. To the extent that these pain processes overlap, acetaminophen, a physical pain suppressant that acts through central (rather than peripheral) neural mechanisms, may also reduce behavioral and neural responses to social rejection. In two experiments, participants took acetaminophen or placebo daily for 3 weeks. Doses of acetaminophen reduced reports of social pain on a daily basis (Experiment 1). We used functional magnetic resonance imaging to measure participants’ brain activity (Experiment 2), and found that acetaminophen reduced neural responses to social rejection in brain regions previously associated with distress caused by social pain and the affective component of physical pain (dorsal anterior cingulate cortex, anterior insula). Thus, acetaminophen reduces behavioral and neural responses associated with the pain of social rejection, demonstrating substantial overlap between social and physical pain.


Sign in / Sign up

Export Citation Format

Share Document