scholarly journals Integrated proteogenomic analysis of metastatic thoracic tumors identifies APOBEC mutagenesis and copy number alterations as drivers of proteogenomic tumor evolution and heterogeneity

2018 ◽  
Author(s):  
Nitin Roper ◽  
Shaojian Gao ◽  
Tapan K. Maity ◽  
A. Rouf Banday ◽  
Xu Zhang ◽  
...  

ABSTRACTElucidation of the proteogenomic evolution of metastatic tumors may offer insight into the poor prognosis of patients harboring metastatic disease. We performed whole-exome and transcriptome sequencing, copy number alterations (CNA) and mass spectrometry-based quantitative proteomics of 37 lung adenocarcinoma (LUAD) and thymic carcinoma (TC) metastases obtained by rapid autopsy and found evidence of patient-specific, multi-dimensional heterogeneity. Extreme mutational heterogeneity was evident in a subset of patients whose tumors showed increased APOBEC-signature mutations and expression of APOBEC3 region transcripts compared to patients with lesser mutational heterogeneity. TP53 mutation status was associated with APOBEC hypermutators in our cohort and in three independent LUAD datasets. In a thymic carcinoma patient, extreme heterogeneity and increased APOBEC3AB expression was associated with a high-risk germline APOBEC3AB variant allele. Patients with CNA occurring late in tumor evolution had corresponding changes in gene expression and protein abundance indicating genomic instability as a mechanism of downstream transcriptomic and proteomic heterogeneity between metastases. Across all tumors, proteomic heterogeneity was greater than copy number and transcriptomic heterogeneity. Enrichment of interferon pathways was evident both in the transcriptome and proteome of the tumors enriched for APOBEC mutagenesis despite a heterogeneous immune microenvironment across metastases suggesting a role for the immune microenvironment in the expression of APOBEC transcripts and generation of mutational heterogeneity. The evolving, heterogeneous nature of LUAD and TC, through APOBEC-mutagenesis and CNA illustrate the challenges facing treatment outcomes.

2019 ◽  
Vol 32 (4) ◽  
pp. 564-575 ◽  
Author(s):  
Nihal Kenawy ◽  
Helen Kalirai ◽  
Joseph J. Sacco ◽  
Sarah L. Lake ◽  
Steffen Heegaard ◽  
...  

2018 ◽  
Author(s):  
Jake R. Conway ◽  
David Liu ◽  
Stephanie Wankowicz ◽  
Amaro Taylor-Weiner ◽  
Felix Dietlein ◽  
...  

Pathology ◽  
2014 ◽  
Vol 46 (1) ◽  
pp. 32-36
Author(s):  
Prudence A. Russell ◽  
Y.U. Yong ◽  
D.O. Hongdo ◽  
Timothy D. Clay ◽  
Melissa M. Moore ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1773-1773
Author(s):  
Jane Houldsworth ◽  
Asha Guttapalli ◽  
Xiao J. Yan ◽  
Charles Ma ◽  
Weiyi Chen ◽  
...  

Abstract Abstract 1773 Risk stratification in chronic lymphocytic leukemia (CLL) is highly desirable and should comprise not only evaluation of clinical features but also molecular prognostic markers. Currently such molecular markers include loss of 17p13, 11q22, 13q14, 6q22, and gain of chromosome 12 as assessed by fluorescence in situ hybridization (FISH) and mutation status of the variable region of the IGH gene (IGHV) by sequencing. In recent years, genome-wide scanning technologies such as array-comparative genomic hybridization (array-CGH) have revealed novel and refined known copy number alterations (CNAs) in the CLL genome. In order to evaluate the potential of array-CGH in prognostication in mature B-cell neoplasms, including CLL, and implement array-CGH in a clinical diagnostic laboratory, a targeted oligonucleotide-based microarray was custom designed to represent genomic regions exhibiting gain/loss in these lymphoid neoplasms. The 4 × 44K formatted array included 2 × 17,348 probes for the 80 selected genomic regions (average resolution of 34kbp), and recommended controls including a 1Mbp genome backbone. DNA extracted from two CLL datasets were submitted to array-CGH using an equimixture of commercially available male/female DNA as a reference. CNAs were detected using Genomics Workbench Lite (Agilent Technologies, Inc.) with the ADM2 algorithm. Analytical sensitivity was assessed by cell line DNA dilution and by FISH (116 specimens) and was 30–40% and 20–25%, respectively. Recurrent CNAs in previously untreated patients, greater than 1.5Mbp in size, were analyzed for association with time to first treatment (TTFT) and overall survival (OS) by the log rank test. Association with IGHV mutation status was tested using the Fisher's two-sided exact test. In both datasets for untreated specimens, unmutated IGHV negatively correlated with both TTFT and OS significantly (p < 0.05). Gain of chromosome 12 was detected in 11–12% of untreated specimens in both datasets and as expected did not associate with outcome. Loss of 13q14 as a sole abnormality (excluding copy number changes arising at known sites of normal variation) was associated with an overall favorable outcome, but specimens with loss of both loci (MIR15A/16-1 and RB1) versus one locus (MIR15A/16-1) did not display significantly different outcomes. As expected loss of 17p13 associated with shorter TTFT and OS, and was observed at higher levels in treated specimens. A similar result was observed for 11q22 loss but not in the second dataset, perhaps due to the relatively short follow-up time. Importantly, four additional copy number changes (gain of 2p, 3q, and 8q, and loss of 8p) were found to associate with shorter TTFT and/or OS, and also occurred at higher frequency in treated specimens. Notably, all but one specimen exhibiting two of these CNAs, were Rai Stage 0-II. After multiple comparisons correction, gain of 2p and 3q, and loss of 8p remained significantly associated with an unfavorable outcome. Gain of 2p25.3-p15 was observed exclusively in unmutated IGHV specimens. Loss of 18p and gain of 17q24 were not considered further for testing due to low frequency or lower frequency in treated specimens (data not shown). Uniquely, these data demonstrate in low-intermediate risk CLL cohorts the prognostic value of genomic gain/loss at multiple sites and support implementation of array-CGH into a clinical setting for risk stratification in CLL where genomic gain or loss of multiple clinically relevant genomic regions can be assessed simultaneously. Dataset 1 Untreated n = 81 TTFT p-value OS p-value Treated n = 38 Dataset 2 n = 169 TTFT p-value OS p-value Treated n = 28 Median TTFT 87.6 mo 24.1 mo Median OS 117.7 mo 37.2 mo Rai Stage     0 25 77     I-II 42 48     III-IV 5 1     na 9 43 Unmutated IGHV 46% (n=80) 0.0003 0.0004 38% (n=163) 0.002 0.044 13q14 loss (sole abnormality) 52.5% 0.038‡ 0.087‡ 33.7% 0.144‡ 0.008‡ MIR15A/16-1, RB1 27.5% 0.77 0.337 11.2% 0.011 1 MIR15A/16-1 25.0% 22.5% 11q22 loss (ATM) 12.3% 0.125 0.009 23.7% 8.3% 0.393 0.977 14.3% 17p13 loss (TP53) 2.5% 0.010 0.012 15.8% 4.7% 0.006 <.0001 10.7% 2p25.3-p15 gain 6.2% 0.002 <.0001 10.5% 3.0% 0.702 0.025 10.7% 8q24 gain 2.5% 0.238 0.014 7.9% 4.1% 0.564 0.007 0.0% 3q26-q27 gain 2.5% <.0001 <.0001 5.3% 3.0% 0.850 <.0001 7.1% 8p23-p21 loss 2.5% 0.002 0.016 10.5% 1.2% 1 <.0001 7.1% Unless otherwise noted, all values associated with shorter times ‡ Associated with longer time na not available Disclosures: Houldsworth: Cancer Genetics, Inc.: Employment. Guttapalli:Cancer Genetics, Inc.: Employment. Ma:Cancer Genetics, Inc.: Employment. Chen:Cancer Genetics, Inc.: Employment. Patil:Cancer Genetics, Inc.: Consultancy.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. 2026-2026
Author(s):  
Mariko Sato ◽  
Kenneth D. Aldape ◽  
Clinton C Mason ◽  
Kristin Diefes ◽  
Lindsey Heathcock ◽  
...  

2026 Background: The genetic alterations of glioma have been studied extensively. IDH1 mutation is associated with younger age and better survival. However, differences in molecular ontogeny within glioma related to IDH1 mutation remain unknown. Here we describe a detailed analysis of copy number alterations (CNA) between IDH1mut vs IDH1wt gliomas of grade 2-3 and 4. Methods: CNA were detected by molecular inversion probes (Affymetrix) and analyzed with Nexus Copy Number Software (BioDiscovery). DNA was extracted from 94 patient FFPE samples including grade 2-3: IDH1wt (n = 17) and IDH1mut (n = 28), and grade IV: IDH1wt ( n = 25) and IDH1mut(n = 24). Chromothripsis was detected using a stringent criteria of at least ten switches of CNA in individual chromosomes. Results: We validated prior findings that IDH1wt GBM have higher frequency of Chr7 amplification (including EGFR) and loss of Chr10 (including PTEN). Other CNA across all grades were: gain of 19q12 and loss of 14q11 in IDH1wt, and gain of 11q21, 10p11, 8q21 and loss of 11p15, 19q13 in IDH1mut. Within grade 2-3 samples, few CNA were associated with mutation status: 2-3wt demonstrated higher frequencies of gain of 7q and loss of 10q, 14q11, and 22q13, while 2-3mut demonstrated higher frequencies of 11q21 gain and 19q13 loss. Grade 4 tumors demonstrated more CNA that differed by mutation status, with 4wt tumors demonstrating gain of 7 and loss of 10 and 14q11, while 4mut demonstrated gains of 8q, 10p, 12p13, 1q23, and loss of 11p15, 3p, 19q13, among others. Comparison of grade 2-3mut vs grade 4mut tumors demonstrated larger number of CNA in the grade 4mut tumors including gain of 1p, 14q, 13q33, 9p, 8q and loss of 22q, 11p15, 10q, and 3p, among others. A significantly higher incidence of chromothripsis events was observed in grade 4mut compared to grade 4wt (p = 0.0374). Conclusions: CNA analysis showed significant differences in molecular ontogeny between IDH1wt and IDH1mut, some of which may further elucidate pathogenesis. Significant CNA increases and increased chromthripsis in grade 4mut support malignant transformation of low grade gliomas through accumulation of genomic instability and genomic catastrophe.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 9023-9023
Author(s):  
Nitin Roper ◽  
Tapan K Maity ◽  
Shaojian Gao ◽  
Abhilash Karavattu Venugopalan ◽  
Xu Zhang ◽  
...  

9023 Background: Intratumor heterogeneity has been characterized among multiple cancer types. In lung adenocarcinoma, APOBEC-mutagenesis has been shown to be a source of heterogeneity. However, these data are largely limited to early stage primary tumors. There is limited information about the role of APOBEC-mutagenesis and somatic variants, copy number changes, transcript and protein expression in influencing tumor heterogeneity in metastatic lung adenocarcinoma and other thoracic tumors. Methods: We applied whole exome sequencing, RNA-seq, OncoScan CNV and mass spectrometry-based proteomic analyses on 46 tumor regions from metastatic sites including lung, liver and kidney, obtained by rapid/warm autopsy from 4 patients (pts) with stage IV lung adenocarcinoma, 1 pt each with pleural mesothelioma and thymic carcinoma. The autopsy procedure was initiated between 2-4 hours of death. Results: All tumors displayed organ-specific, branched evolution that was consistent across exome, transcriptome and proteomic analyses. The degree of heterogeneity at the genomic and proteomic level was patient-specific. There was extensive heterogeneity within the tumors of one of four patients with lung adenocarcinoma and in the thymic carcinoma patient (both non-smokers) with multiple driver mutations and copy number changes occurring in only some of the tumors suggesting ongoing late tumor evolution. Further examination of the heterogenous thymic and lung adenocarcinoma tumors showed strong enrichment with the APOBEC-mutagenesis pattern and high associated levels of APOBEC3B mRNA. Conclusions: Metastatic lung adenocarcinoma, thymic carcinoma and mesothelioma evolve through a branched, organ-specific process with marked differences in the acquisition of significant driver mutations and copy number changes. APOBEC3B is a potential driver of heterogeneity in pts with advanced, heterogeneous metastatic lung adenocarcinoma and thymic carcinoma and needs to be evaluated further.


2019 ◽  
Author(s):  
Xing Yi Woo ◽  
Jessica Giordano ◽  
Anuj Srivastava ◽  
Zi-Ming Zhao ◽  
Michael W. Lloyd ◽  
...  

ABSTRACTPatient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, impacting the accuracy of PDX modeling of human cancer. Here we exhaustively analyze copy number alterations (CNAs) in 1451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multi-region samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.


2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuhang Wang ◽  
Pei Yuan ◽  
Beibei Mao ◽  
Ning Li ◽  
Jianming Ying ◽  
...  

AbstractSeveral clinical trials have shown the safety and effectiveness of PD-1/PD-L1 inhibitors in neoadjuvant therapy in resectable non-small cell lung cancer (NSCLC). However, 18–83% patients can benefit from it. In this study, we aimed to assess the association of PD-L1 expression, tumor mutation burden, copy number alteration (CNA, including copy number gain and loss) burden with the pathologic response to neoadjuvant PD-1 blockade and investigate the changes in the tumor immune microenvironment (TIME) during neoadjuvant immunotherapy in NSCLC. Pre-immunotherapy treatment tumor samples from twenty-nine NSCLC patients who received neoadjuvant immunotherapy with sintilimab, an anti-PD-1 drug, were subjected to targeted DNA sequencing and PD-L1 immunochemistry staining. The pathological response was positively correlated with tumor proportion score (TPS) of PD-L1 and negatively correlated with copy number gain (CNgain) burden. Of note, the combination of CNgain burden and TPS can better stratify major pathological response (MPR) patients than did CNgain or TPS alone. Whereas, TMB showed a limited correlation with pathological regression. Additionally, PD-1 blockade led to an increase in CD8+PD-1−T cells which was clinically relevant to MPR as evaluated by multiplex immunofluorescence. A significant reduction in CD19+ cells was observed in the Non-MPR group but not in the MPR group, indicating the involvement of B cells in improving neoadjuvant immunotherapy response in NSCLC. Together, our study provides new data for the correlation of PD-L1 expression and genomic factors with drug response in neoadjuvant immunotherapy settings in NSCLC. The changes of TIME may provide novel insight into the immune responses to neoadjuvant anti-PD-1 therapy.


2015 ◽  
Vol 100 (3) ◽  
pp. E493-E502 ◽  
Author(s):  
C. Christofer Juhlin ◽  
Gerald Goh ◽  
James M. Healy ◽  
Annabelle L. Fonseca ◽  
Ute I. Scholl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document