scholarly journals C. elegans germ cells divide and differentiate along a folded epithelium

2018 ◽  
Author(s):  
Hannah S. Seidel ◽  
Tilmira A. Smith ◽  
Jessica K. Evans ◽  
Jarred Q. Stamper ◽  
Thomas G. Mast ◽  
...  

AbstractKnowing how stem cells and their progeny are positioned within their tissues is essential for understanding their regulation. One paradigm for stem cell regulation is the C. elegans germline, which is maintained by a pool of germline stem cells in the distal gonad, in a region known as the ‘progenitor zone’. The C. elegans germline is widely used as a stem cell model, but the cellular architecture of the progenitor zone has been unclear. Here we characterize this architecture by creating virtual 3D models of the progenitor zone in both sexes. We show that the progenitor zone in adult hermaphrodites is essentially a folded epithelium. The progenitor zone in males is not folded. Analysis of germ cell division shows that daughter cells are born side-by-side along the surface of the epithelium. Analysis of a key regulator driving differentiation, GLD-1, shows that germ cells in hermaphrodites differentiate along the path of the folded epithelium, with previously described “steps” in GLD-1 expression corresponding to germline folds. Our study provides a three-dimensional view of how C. elegans germ cells progress from stem cell to overt differentiation, with critical implications for regulators driving this transition.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Sylvia Garza-Manero ◽  
Abdulmajeed Abdulghani A. Sindi ◽  
Gokula Mohan ◽  
Ohoud Rehbini ◽  
Valentine H. M. Jeantet ◽  
...  

Abstract Background Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells. Results We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2. Conclusions We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.


2012 ◽  
Vol 23 (8) ◽  
pp. 1524-1532 ◽  
Author(s):  
Therese M. Roth ◽  
C.-Y. Ason Chiang ◽  
Mayu Inaba ◽  
Hebao Yuan ◽  
Viktoria Salzmann ◽  
...  

Drosophila male germline stem cells (GSCs) divide asymmetrically, balancing self-renewal and differentiation. Although asymmetric stem cell division balances between self-renewal and differentiation, it does not dictate how frequently differentiating cells must be produced. In male GSCs, asymmetric GSC division is achieved by stereotyped positioning of the centrosome with respect to the stem cell niche. Recently we showed that the centrosome orientation checkpoint monitors the correct centrosome orientation to ensure an asymmetric outcome of the GSC division. When GSC centrosomes are not correctly oriented with respect to the niche, GSC cell cycle is arrested/delayed until the correct centrosome orientation is reacquired. Here we show that induction of centrosome misorientation upon culture in poor nutrient conditions mediates slowing of GSC cell proliferation via activation of the centrosome orientation checkpoint. Consistently, inactivation of the centrosome orientation checkpoint leads to lack of cell cycle slowdown even under poor nutrient conditions. We propose that centrosome misorientation serves as a mediator that transduces nutrient information into stem cell proliferation, providing a previously unappreciated mechanism of stem cell regulation in response to nutrient conditions.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 92-92
Author(s):  
Klaus Rehe ◽  
Kerrie Wilson ◽  
Simon Bomken ◽  
Hesta McNeill ◽  
Martin Stanulla ◽  
...  

Abstract Abstract 92 Research on cancer stem cells, cells that self-renew and reconstitute the full phenotype of the original malignancy, has yielded controversial results regarding their frequency and identity for many cancers. The hierarchical stem cell model has been well established in some malignancies such as acute myeloid leukemia and states that only rare, immunophenotypically immature blasts harbor stem cell activity, resembling a normal physiological hierarchy. The opposing stochastic model proposes that stemness in cancer cells is supported by extrinsic stimuli and that a substantial fraction of malignant cells have this potential. Continued optimization of in vivo xenotransplantation modeling recently caused a paradigm shift for some cancers, for example in malignant melanoma where stem cell activity was found in as many as 1 in 4 cells. For acute lymphoblastic leukemia (ALL) we and others previously challenged the hierarchical model by demonstrating that both immature and more mature leukemic blasts contain self-renewal properties (Cancer Cell 2008, 14(1), p47-58). In this study we address the frequency of leukemic stem cells in the bulk leukemia and also, more specifically, in subpopulations of different blast maturity by using unsorted and highly purified flow sorted cell fractions. Primary patient material as well as leukemic blasts harvested from engrafted mouse bone marrow (secondary and tertiary material) were sorted for their CD10, CD20 or CD34 expression followed by orthotopic intrafemoral transplantation into severely immunocompromised NOD/scid IL2Rγnull (NSG) mice. Engraftment of transplanted CD19+CD10low and CD19+CD10high, CD19+CD20low and CD19+CD20high and CD19+CD34low and CD19+CD34high blast populations was monitored by 5 color flow cytometry using material from consecutive bone marrow punctures, final bone marrow harvests and/or single cell suspensions from spleens. Primary ALL samples from 15 high risk (BCR/ABL positive (n=8), BCR/ABL like ALL (n=2), high hyperdiploid/MRD positive (n=2), MRD positive (n=1), MLL/AF4 (n=2)), 3 intermediate risk (high WBC/MRD negative (n=2), age >10 years (n=1)) and 3 standard risk (n=3) patients were included. Cells sorted into CD19+CD10low and CD19+CD10high fractions were transplanted from primary patient material (n=4, HR; n=1, SR) and from secondary samples (n=4, HR; n=1; IR) with cells from one HR patient used at limiting dilutions. As few as 100 sorted cells of either fraction were sufficient to repopulate the leukemia. CD19+CD20high and CD19+CD20 low fractions from primary (n=7, HR; n=1, IR), secondary (n=5, HR; n=1, IR) and tertiary material (n=2, HR; n=1, IR) engrafted NSG mice. Limiting dilutions were performed on secondary (n=4, HR) and tertiary material (n=2, HR). Cell numbers required for engraftment varied between leukemias with as few as 100 cells being sufficient to cause engraftment. Limiting dilution experiments using CD19+CD34high and CD19+CD34low fractions from secondary (n=1, HR) and tertiary (n=1, HR) material yielded engraftment with as few as 10 CD19+CD34high and 100 CD19+CD34low cells. Similarly, unsorted primary (n=11, HR; n=2, IR), secondary (n=2, HR) and tertiary material (n=1, HR) required as few as 10 cells for leukemic reconstitution. Taken together, both unsorted and sorted blasts of all immunophenotypes and transplanted with low numbers were able to reconstitute the complete original phenotype of the patient leukemia. All limiting dilutions were transplanted down to 10 cells per mouse and those mice not engrafted yet are still under observation. Furthermore, the ability to self-renew was demonstrated by serial transplantation. Finally, we compared expression of self-renewal associated genes (BMI1, EZH2, HMGA2, MEIS1, TERT) in CD19+CD34low and CD19+CD34high fractions of 5 HR and 1 SR samples with that in cord blood. Interestingly, expression of these genes was not dependent on the CD34 status of the leukemic cells, whereas HMGA2, MEIS1 and TERT were upregulated in CD34+ cord blood cells. In summary we provide strong evidence for the stochastic cancer stem cell model in B precursor ALL by demonstrating that (i) a broad spectrum of blast immunophenotypes exhibit stem cell characteristics and (ii) that this stemness is highly frequent among ALL cells. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 679-690 ◽  
Author(s):  
A. Forbes ◽  
R. Lehmann

The zinc-finger protein Nanos and the RNA-binding protein Pumilio act together to repress the translation of maternal hunchback RNA in the posterior of the Drosophila embryo, thereby allowing abdomen formation. nanos RNA is localized to the posterior pole during oogenesis and the posteriorly synthesized Nanos protein is sequestered into the germ cells as they form in the embryo. This maternally provided Nanos protein is present in germ cells throughout embryogenesis. Here we show that maternally deposited Nanos protein is essential for germ cell migration. Lack of zygotic activity of nanos and pumilio has a dramatic effect on germline development of homozygous females. Given the coordinate function of nanos and pumilio in embryonic patterning, we analyzed the role of these genes in oogenesis. We find that both genes act in the germline. Although the nanos and pumilio ovarian phenotypes have similarities and both genes ultimately affect germline stem cell development, the focus of these phenotypes appears to be different. While pumilio mutant ovaries fail to maintain stem cells and all germline cells differentiate into egg chambers, the focus of nanos function seems to lie in the differentiation of the stem cell progeny, the cystoblast. Consistent with the model that nanos and pumilio have different phenotypic foci during oogenesis, we detect high levels of Pumilio protein in the germline stem cells and high levels of Nanos in the dividing cystoblasts. We therefore suggest that, in contrast to embryonic patterning, Nanos and Pumilio may interact with different partners in the germline.


2008 ◽  
Vol 26 (17) ◽  
pp. 2901-2910 ◽  
Author(s):  
Lori S. Hart ◽  
Wafik S. El-Deiry

With evidence emerging in support of a cancer stem-cell model of carcinogenesis, it is of paramount importance to identify and image these elusive cells in their natural environment. The cancer stem-cell hypothesis has the potential to explain unresolved questions of tumorigenesis, tumor heterogeneity, chemotherapeutic and radiation resistance, and even the metastatic phenotype. Intravital imaging of cancer stem cells could be of great value for determining prognosis, as well as monitoring therapeutic efficacy and influencing therapeutic protocols. Cancer stem cells represent a rare population of cells, as low as 0.1% of cells within a human tumor, and the phenotype of isolated cancer stem cells is easily altered when placed under in vitro conditions. This represents a challenge in studying cancer stem cells without manipulation or extraction from their natural environment. Advanced imaging techniques allow for the in vivo observation of physiological events at cellular resolution. Cancer stem-cell studies must take advantage of such technology to promote a better understanding of the cancer stem-cell model in relation to tumor growth and metastasis, as well as to potentially improve on the principles by which cancers are treated. This review examines the opportunities for in vivo imaging of putative cancer stem cells with regard to currently accepted cancer stem-cell characteristics and advanced imaging technologies.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 740-740
Author(s):  
E Jane Hubbard

Abstract Failure to maintain stem cells with age is associated with conditions such as tissue degeneration and increased susceptibility to tissue damage. We use the C. elegans germline stem cell system as a model to study stem cell aging. This system combines a well-established model for aging with an accessible stem cell system, providing a unique opportunity to understand how aging influences stem cell dynamics. The germline stem/progenitor pool in in C. elegans becomes depleted over time. At the cellular level, aging influences both the size of the stem cell pool and the proliferation rate of stem cells. The flux of differentiated cells also affects how aging impacts the pool. This depletion is partially alleviated in mutants with reduced insulin/IGF-like signaling via inhibition of the transcription factor DAF-16/FOXO. In this role, DAF-16 does not act in the germ line, and its anatomical requirements are different from its previously described roles in larval germline proliferation, dauer control, and lifespan regulation. We found that DAF-16/FOXO is required in certain somatic cells in the proximal part of the reproductive system to regulate the stem cell pool. We also find that the degree to which various age-defying perturbations affect lifespan does not correlate with their effect on germline stem cell maintenance. We are investigating additional aspects of aging germline stem cells using this system.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
ChangHwan Lee ◽  
Erika B Sorensen ◽  
Tina R Lynch ◽  
Judith Kimble

C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2937-2947 ◽  
Author(s):  
D. McKearin ◽  
B. Ohlstein

Cell differentiation commonly dictates a change in the cell cycle of mitotic daughters. Previous investigations have suggested that the Drosophila bag of marbles (bam) gene is required for the differentiation of germline stem cell daughters (cystoblasts) from the mother stem cells, perhaps by altering the cell cycle. In this paper, we report the preparation of antibodies to the Bam protein and the use of those reagents to investigate how Bam is required for germ cell development. We find that Bam exists as both a fusome component and as cytoplasmic protein and that cytoplasmic and fusome Bam might have separable activities. We also show that bam mutant germ cells are blocked in differentiation and are trapped as mitotically active cells like stem cells. A model for how Bam might regulate cystocyte differentiation is presented.


Sign in / Sign up

Export Citation Format

Share Document