scholarly journals The effect of stride length on lower extremity joint kinetics at various gait speeds

2018 ◽  
Author(s):  
Robert L. McGrath ◽  
Melissa L. Ziegler ◽  
Margaret Pires-Fernandes ◽  
Brian A. Knarr ◽  
Jill S. Higginson ◽  
...  

AbstractRobot-assisted training is a promising tool under development for improving walking function based on repetitive goal-oriented task practice. The challenges in developing the controllers for gait training devices that promote desired changes in gait is complicated by the limited understanding of the human response to robotic input. A possible method of controller formulation can be based on the principle of bio-inspiration, where a robot is controlled to apply the change in joint moment applied by human subjects when they achieve a gait feature of interest. However, it is currently unclear how lower extremity joint moments are modulated by even basic gaitspatio-temporal parameters.In this study, we investigated how sagittal plane joint moments are affected by a factorial modulation of two important gait parameters: gait speed and stride length. We present the findings obtained from 20 healthy control subjects walking at various treadmill-imposed speeds and instructed to modulate stride length utilizing real-time visual feedback. Implementing a continuum analysis of inverse-dynamics derived joint moment profiles, we extracted the effects of gait speed and stride length on joint moment throughout the gait cycle. Moreover, we utilized a torque pulse approximation analysis to determine the timing and amplitude of torque pulses that approximate the difference in joint moment profiles between stride length conditions, at all gait speed conditions.Our results show that gait speed has a significant effect on the moment profiles in all joints considered, while stride length has more localized effects, with the main effect observed on the knee moment during stance, and smaller effects observed for the hip joint moment during swing and ankle moment during the loading response. Moreover, our study demonstrated that trailing limb angle, a parameter of interest in programs targeting propulsion at push-off, was significantly correlated with stride length. As such, our study has generated assistance strategies based on pulses of torque suitable for implementation via a wearable exoskeleton with the objective of modulating stride length, and other correlated variables such as trailing limb angle.

2005 ◽  
Vol 21 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Sean P. Flanagan ◽  
George J. Salem

In the analysis of human movement, researchers often sum individual joint kinetics to obtain a single measure of lower extremity function. The extent to which these summed measures relate to the mechanical objectives of the task has not been formally validated. The criterion validity of these measures was established with comparisons to the mechanical objective of two multiple-joint tasks. For the Work task 18 participants performed a loaded barbell squat using 4 resistances while instrumented for biomechanical analysis. For the Power they performed 2 predetermined amounts of work at both self-selected and fast speeds. Using inverse dynamics techniques, the peak net joint moment (PM) was calculated bilaterally in the sagittal plane at the ankle, knee, and hip and was summed into a single measure. This measure was correlated with the task objectives using simple linear regression. Similar procedures were used for the average net joint moment (AM), peak (PP), and average (AP) net joint moment power, and the net joint moment impulse (IM) and work (IP). For the Work task all 6 measures were significantly correlated with the task objective, but only AM, PM, and IP had correlation coefficients above 0.90. For the Power task, IM was not significantly correlated with the task objective, and only AP had a correlation coefficient above 0.90. These findings indicate that the validity of summing individual kinetic measures depends on both the measure chosen and the mechanical objective of the task.


2013 ◽  
Vol 29 (6) ◽  
pp. 804-809 ◽  
Author(s):  
Steven T. McCaw ◽  
Jacob K. Gardner ◽  
Lindsay N. Stafford ◽  
Michael R. Torry

An inverse dynamic analysis and subsequent calculation of joint kinetic and energetic measures is widely used to study the mechanics of the lower extremity. Filtering the kinematic and kinetic data input to the inverse dynamics equations affects the calculated joint moment of force (JMF). Our purpose was to compare selected integral values of sagittal plane ankle, knee, and hip joint kinetics and energetics when filtered and unfiltered GRF data are input to inverse dynamics calculations. Six healthy, active, injury-free university student (5 female, 1 male) volunteers performed 10 two-legged landings. JMFs were calculated after two methods of data filtering. Unfiltered: marker data were filtered at 10 Hz, GRF data unfiltered. Filtered: both GRF and marker data filtered at 10 Hz. The filtering of the GRF data affected the shape of the knee and hip joint moment-time curves, and the ankle, knee and hip joint mechanical power-time curves. We concluded that although the contributions of individual joints to the support moment and to total energy absorption were not affected, the attenuation of high-frequency oscillations in both JMF and JMP time curves will influence interpretation of CNS strategies during landing.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0200862 ◽  
Author(s):  
Robert L. McGrath ◽  
Melissa L. Ziegler ◽  
Margaret Pires-Fernandes ◽  
Brian A. Knarr ◽  
Jill S. Higginson ◽  
...  

Author(s):  
Andrew D. Nordin ◽  
Joshua P. Bailey ◽  
Janet S. Dufek

The purpose of this examination was to explore the effects of stride length (SL) perturbations on walking gait, relative to preferred walking (PW) and running (PR), via lower extremity range of motion (ROM) variability. ROM variability at the hip, knee, and ankle joints, in the sagittal and frontal planes were used in evaluating motor control of gait, where increased gait variability has been previously implicated in fall susceptibly. Nine participants (5 male, 4 female; mean age 23.11±3.55 years, height 1.72±0.18m, mass 72.66±14.37kg) free from previous lower extremity injury were examined. Kinematic data were acquired using a 12-camera system (Vicon MX T40-S; 200Hz). Data filtering and interpolation included a low pass, 4th order, Butterworth filter (15Hz cutoff) and cubic spline. Five gait trials were completed for PW and PR, with subsequent SL manipulations computed as a percentage of leg length (LL). SL perturbations included 60%, 80%, 100%, 120%, and 140% of LL. Kinematic analysis involved one stride (two steps) during each gait trial, assessing ROM at the hip, knee, and ankle from heel contact to toe-off for each limb, in the sagittal and frontal planes. Variability was expressed using coefficient of variation (%). Comparisons were made using 3×7 (joint × stride condition) mixed model ANOVAs, with repeated measures on stride condition (α = 0.05), using SPSS 20.0. Differences in lower extremity ROM variability were detected among stride conditions in the frontal and sagittal planes (F[3.185,76.451] = 3.004, p = .033; F[4.595,110.279] = 2.834, p = .022, respectively). Greater ROM variability was observed at, and in excess of SLs of 100%LL relative to PW in the frontal plane (PW: 9.2±4.2%; 100%LL: 11.8±3.6%, p = .014; 120%LL: 13.5±5.8%, p = .046; 140%LL: 13.8±6.5%, p = .016), and between SLs of 80%LL and 120%LL in the sagittal plane (4.9±3.0%; 7.8±4.7%, p = .046, respectively). From this, PW appeared to occur within SLs of 60%LL to 80%LL, while SLs exceeding 100%LL resulted in increased lower extremity ROM variability. This may have consequences for fall susceptibility at increased stride lengths during walking. PR did not reveal significant variability differences (p>.05) compared to walking conditions in either the sagittal or frontal plane (7.5±5.0%; 12.8±7.7%, respectively), suggesting that running represents a separate, but stable gait pattern. In the sagittal plane, ROM variability was significantly lower at the hip (3.9±1.5%), relative to the ankle (8.4±1.6%, p<.001) and knee joints (7.4±2.6%, p = .001), suggesting that gait control may be more active at the ankle and knee joints. Future investigations should examine kinetic changes in gait when altering stride length.


2010 ◽  
Vol 26 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Richard B. Souza ◽  
Shruti Arya ◽  
Christine D. Pollard ◽  
George Salem ◽  
Kornelia Kulig

The purpose of the current investigation was to test the hypothesis that subjects with patellar tendinopathy would demonstrate altered sagittal plane joint moment contributions during hopping tasks. Fourteen subjects (7 patellar tendinopathy, 7 controls) participated. Sagittal net joint moments of the lower extremity, total support moment, and joint contributions to the total support moment were calculated while subjects hopped continuously at a self-selected frequency and at 1.67 Hz. Significant differences were observed for contributions to the total support moment (p= .022). When averaged across hopping frequencies, subjects with patellar tendinopathy demonstrated greater hip contribution (p= .030) and lesser knee contribution (p= .006) compared with the control subjects. Shifting the workload away from the knee and toward the hip may result in a detrimental increase in hip demand and potentially harmful long-term effects on the articular cartilage of the hip.


2011 ◽  
Vol 35 (2) ◽  
pp. 140-149 ◽  
Author(s):  
Laurent Frossard ◽  
Laurence Cheze ◽  
Raphael Dumas

Background: Calculation of lower limb kinetics is limited by floor-mounted force-plates. Objectives: Comparison of hip joint moments, power and mechanical work on the prosthetic limb of a transfemoral amputee calculated by inverse dynamics using either the ground reactions (force-plates) or knee reactions (transducer). Study design: Comparative analysis. Methods: Kinematics, ground reaction and knee reaction data were collected using a motion analysis system, two force-plates, and a multi-axial transducer mounted below the socket, respectively. Results: The inverse dynamics using ground reaction underestimated the peaks of hip energy generation and absorption occurring at 63% and 76% of the gait cycle (GC) by 28% and 54%, respectively. This method also overestimated by 24% a phase of negative work at the hip (37%–56% GC), and underestimated the phases of positive (57%–72% GC) and negative (73%–98%GC) work at the hip by 11% and 58%, respectively. Conclusions: A transducer mounted within the prosthesis has the capacity to provide more realistic kinetics of the prosthetic limb because it enables assessment of multiple consecutive steps and a wide range of activities without the issue of foot placement on force-plates. Clinical relevance The hip is the only joint an amputee controls directly to set the prosthesis in motion. Hip joint kinetics are associated with joint degeneration, low back pain, risk of falls, etc. Therefore, realistic assessment of hip kinetics over multiple gait cycles and a wide range of activities is essential.


Author(s):  
Ali Selk Ghafari ◽  
Ali Meghdari ◽  
Gholam Reza Vossoughi

An inverse dynamics musculoskeletal model of the lower extremity was combined with an optimization technique to estimate individual muscular forces and powers during stair ascent and descent. Eighteen Hill-type musculotendon actuators per leg were combined into the eleven functional muscle groups based on anatomical classification to drive the model in the sagittal plane. Simulation results illustrate the major functional differences in plantar flexors of the ankle and extensors of the knee and hip joints during ascent and descent. The results of this study not only could be employed to evaluate the rehabilitation results in the elderly but also could be used to design more anthropometric assistive devices with optimum power consumption.


2010 ◽  
Vol 45 (1) ◽  
pp. 16-21 ◽  
Author(s):  
Gaurav Telhan ◽  
Jason R. Franz ◽  
Jay Dicharry ◽  
Robert P. Wilder ◽  
Patrick O. Riley ◽  
...  

Abstract Context: Knowledge of the kinetic changes that occur during sloped running is important in understanding the adaptive gait-control mechanisms at work and can provide additional information about the poorly understood relationship between injury and changes in kinetic forces in the lower extremity. A study of these potential kinetic changes merits consideration, because training and return-to-activity programs are potentially modifiable factors for tissue stress and injury risk. Objective: To contribute further to the understanding of hill running by quantifying the 3-dimensional alterations in joint kinetics during moderately sloped decline, level, and incline running in a group of healthy runners. Design: Crossover study. Setting: Three-dimensional motion analysis laboratory. Patients or Other Participants: Nineteen healthy young runners/joggers (age  =  25.3 ± 2.5 years). Intervention(s): Participants ran at 3.13 m/s on a treadmill under the following 3 different running-surface slope conditions: 4° decline, level, and 4° incline. Main Outcome Measure(s): Lower extremity joint moments and powers and the 3 components of the ground reaction force. Results: Moderate changes in running-surface slope had a minimal effect on ankle, knee, and hip joint kinetics when velocity was held constant. Only changes in knee power absorption (increased with decline-slope running) and hip power (increased generation on incline-slope running and increased absorption on decline-slope running in early stance) were noted. We observed an increase only in the impact peak of the vertical ground reaction force component during decline-slope running, whereas the nonvertical components displayed no differences. Conclusions: Running style modifications associated with running on moderate slopes did not manifest as changes in 3-dimensional joint moments or in the active peaks of the ground reaction force. Our data indicate that running on level and moderately inclined slopes appears to be a safe component of training regimens and return-to-run protocols after injury.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Roberto De Icco ◽  
Cristina Tassorelli ◽  
Eliana Berra ◽  
Monica Bolla ◽  
Claudio Pacchetti ◽  
...  

In this randomized controlled study we analyse and compare the acute and chronic effects of visual and acoustic cues on gait performance in Parkinson’s Disease (PD). We enrolled 46 patients with idiopathic PD who were assigned to 3 different modalities of gait training: (1) use of acoustic cues, (2) use of visual cues, or (3) overground training without cues. All patients were tested with kinematic analysis of gait at baseline (T0), at the end of the 4-week rehabilitation programme (T1), and 3 months later (T2). Regarding the acute effect, acoustic cues increased stride length and stride duration, while visual cues reduced the number of strides and normalized the stride/stance distribution but also reduced gait speed. As regards the chronic effect of cues, we recorded an improvement in some gait parameters in all 3 groups of patients: all 3 types of training improved gait speed; visual cues also normalized the stance/swing ratio, acoustic cues reduced the number of strides and increased stride length, and overground training improved stride length. The changes were not retained at T2 in any of the experimental groups. Our findings support and characterize the usefulness of cueing strategies in the rehabilitation of gait in PD.


Sign in / Sign up

Export Citation Format

Share Document