scholarly journals Nuclear pore density controls heterochromatin reorganization during senescence

2018 ◽  
Author(s):  
Charlene Boumendilrid ◽  
Priya Hari ◽  
Karl C. F. Olsen ◽  
Juan Carlos Acosta ◽  
Wendy A. Bickmore

AbstractOncogene induced senescence (OIS) is a cell cycle arrest program triggered by oncogenic signalling. An important characteristic of OIS is activation of the senescence associated secretory phenotype (SASP)1 which can reinforce cell cycle arrest, lead to paracrine senescence but also promote tumour progression2–4. Concomitant with cell cycle arrest and the SASP activation, OIS cells undergo a striking nuclear chromatin reorganization, with loss of heterochromatin from the nuclear periphery and the appearance of internal senescence-associated heterochromatin foci (SAHF)5. The mechanisms by which SAHF are formed, and their role in cell cycle arrest and expression of the SASP, remain poorly understood. Here we show that nuclear pore density increases during OIS and is responsible for SAHF formation. In particular, we show that the nucleoporin TPR is required for both SAHF formation and maintenance. The TPR-induced loss of SAHF does not affect cell cycle arrest but completely abrogates the SASP. Our results uncover a previously unknown role of nuclear pores in heterochromatin reorganization in mammalian nuclei and in senescence, which uncouples the cell cycle arrest from the SASP.

2019 ◽  
Vol 116 (3) ◽  
pp. 76a
Author(s):  
Manasvita Vashisth ◽  
Sangkyun Cho ◽  
Dennis Discher

Cell ◽  
2013 ◽  
Vol 154 (3) ◽  
pp. 623-636 ◽  
Author(s):  
Kristina Jonas ◽  
Jing Liu ◽  
Peter Chien ◽  
Michael T. Laub

Author(s):  
Sofia Ferreira-Gonzalez ◽  
Daniel Rodrigo-Torres ◽  
Victoria L. Gadd ◽  
Stuart J. Forbes

AbstractCellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.


2004 ◽  
Vol 37 (4) ◽  
pp. 871-880 ◽  
Author(s):  
Hyo-Soo Kim ◽  
Hyun-Jai Cho ◽  
Hyun-Ju Cho ◽  
Sun-Jung Park ◽  
Kyung-Woo Park ◽  
...  

2008 ◽  
Vol 7 (8) ◽  
pp. 1309-1317 ◽  
Author(s):  
Iwona Migdal ◽  
Yulia Ilina ◽  
Markus J. Tamás ◽  
Robert Wysocki

ABSTRACT Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1992-1992
Author(s):  
Mahmoud Mikdar ◽  
Marion Serra ◽  
Elia Colin ◽  
Yves Colin Aronovicz ◽  
Caroline Le Van Kim ◽  
...  

Abstract Background Adenosine is a major signaling nucleoside that activates cellular signaling pathways through a family of four different G protein-coupled adenosine receptors (ARs), A 1, A 2A, A 2B, and A 3. At steady state conditions, extracellular levels of adenosine remain low (10 to 200 nM) either through its rapid cellular uptake by specialized nucleoside transporters, mainly through the equilibrative nucleoside transporter 1 (ENT1), or its degradation by adenosine deaminases. However, the extracellular levels of adenosine can be rapidly elevated up to 100 μM in response to hypoxia, inflammation, or tissue injury. Under pathophysiological conditions, adenosine signaling is involved in modulating inflammation, fibrosis, and ischemic tissue injury. In sickle cell disease (SCD), adenosine signaling is enhanced and contributes to the pathophysiology of the disease. Despite the importance of adenosine signaling in regulating cell proliferation, and stem cell regeneration, as well as in red blood cell functions and adaptation to hypoxia, very little is known about its implication in hematopoiesis, and more specifically during erythropoiesis. Here, we aimed to investigate the effects of high extracellular adenosine on the erythroid commitment and differentiation of hematopoietic progenitors, and to decipher the implication of ARs in these processes. Results To investigate the role of high extracellular adenosine in regulating erythroid commitment and differentiation of hematopoietic progenitors, we performed ex vivo erythropoiesis of healthy CD34 + cells in the presence or absence of increased extracellular adenosine concentrations ranging from 10 to 200 µM. Our results showed that adenosine decreases erythroid proliferation in a dose dependent manner. High adenosine levels (>50μM) inhibited the proliferation of erythroid precursors and increased apoptosis via a cell cycle arrest in G1. Accordingly, western blots revealed the accumulation of p53 and its downstream target p21, a well-known mediator of G1 cell-cycle arrest, in adenosine-treated cells. Moreover, adenosine treatment led to the persistence of a non-erythroid GPA neg subpopulation expressing myeloid markers (CD18, CD11a, CD13, CD33). May-Grünwald Giemsa staining of this subset revealed granular cells at different stages of differentiation. The culture of FACS-sorted CD36 + and CD36 - cells suggested that this adenosine-induced GPA neg population originates from the survival of CD36 - myeloid progenitors even in the presence of erythropoietin. Importantly, these effects were specific to adenosine as neither guanosine, uridine nor cytidine affected the proliferation and differentiation of erythroid precursors. Furthermore, we have recently shown that ENT1-mediated adenosine uptake is essential for optimal erythroid differentiation. Therefore, we suggested that elevated extracellular adenosine perturbs erythropoiesis via its signaling upon ARs activation. To confirm this hypothesis, we assessed the effect of ARs activation during erythropoiesis. Given that A 2B and A 3 are the only known ARs expressed in human hematopoietic progenitors and erythroid precursors, we used BAY60-6583 and CI-IB-MECA, two highly selective agonists for A 2B and A 3 receptors, respectively. Both BAY60-6583 and CI-IB-MECA increased apoptosis and decreased erythroblast maturation and enucleation, while only Cl-IB-MECA led to the upregulation of CD33 and CD11a myeloid markers and promoted the differentiation of a GPA neg myeloid subpopulation. Conclusion Overall, our results place adenosine signaling as a new player in hematopoiesis regulation. Adenosine signaling via A 3 perturbs erythropoiesis and promotes the survival and differentiation of myeloid progenitors even in an erythroid favoring environment. While the activation of A 2B hampers optimal erythropoiesis without impacting the myeloid differentiation. As both ineffective erythropoiesis and increased leucocyte counts are reported in SCD, and given the detrimental role of high adenosine levels in its pathophysiology, further studies are ongoing to address the impact of adenosine signaling on hematopoiesis in this disease. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2018 ◽  
Author(s):  
Priya Hari ◽  
Fraser R. Millar ◽  
Nuria Tarrats ◽  
Jodie Birch ◽  
Curtis J. Rink ◽  
...  

ABSTRACTCellular senescence is a stress response program characterised by a robust cell cycle arrest and the induction of a pro-inflammatory senescence-associated secretory phenotype (SASP) that is triggered through an unknown mechanism. Here, we show that during oncogene-induced senescence (OIS), the Toll-like receptor TLR2 and its partner TLR10 are key mediators of senescence in vitro and in murine models. TLR2 promotes cell cycle arrest by regulating the tumour suppressors p53-p21CIP1, p16INK4a and p15INK4b, and regulates the SASP through the induction of the acute-phase serum amyloids A1 and A2 (A-SAA) that, in turn, function as the damage associated molecular patterns (DAMPs) signalling through TLR2 in OIS. Finally, we found evidence that the cGAS-STING cytosolic DNA sensing pathway primes TLR2 and A-SAA expression in OIS. In summary, we report that innate immune sensing of senescence-associated DAMPs by TLR2 controls the SASP and reinforces the cell cycle arrest program in OIS.


2018 ◽  
Vol 185 (2) ◽  
pp. 486-496 ◽  
Author(s):  
Ping Hu ◽  
Zhicai Zuo ◽  
Fengyuan Wang ◽  
Xi Peng ◽  
Ke Guan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document