scholarly journals Tauopathy in theAPPswe/PS1ΔE9mouse model of familial Alzheimer’s disease

2018 ◽  
Author(s):  
Athanasios Metaxas ◽  
Camilla Thygesen ◽  
Stefan J. Kempf ◽  
Marco Anzalone ◽  
Ramanan Vaitheeswaran ◽  
...  

AbstractDespite compelling evidence that the accumulation of amyloid-beta (Aβ) promotes cortical MAPT (tau) aggregation in familial and idiopathic Alzheimer’s disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. The absence of neurofibrillary lesions in amyloidosis mice remains a challenge for the amyloidocentric paradigm of AD pathogenesis. It has resulted in the generation of transgenic mice harboring mutations in theirtaugene, which may be inappropriate for studying a disease with no knownTAUmutations, such as AD. Here, we have usedAPPswe/PS1ΔE9mice to show that tau pathology can develop spontaneously in murine models of familial AD. Tauopathy was abundant around Aβ deposits, with Gallyas- and thioflavin-S-positive perinuclear inclusions accumulating in theAPPswe/PS1ΔE9cortex by 18 months of age. Age-dependent increases in Gallyas signal correlated positively with binding levels of the paired helical filament (PHF) ligand [18F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Tandem mass tag proteomics identified sequences of hyperphosphorylated tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Human frontal gyrus tissue was used to validate these findings, revealing primarily quantitative differences between the tauopathy observed in AD patient vs. transgenic mouse tissue. Levels oftaumRNA were not different betweenAPPswe/PS1ΔE9and littermate control animals. As physiological levels of endogenous, ‘wild-type’ tau aggregate secondarily to Aβ in transgenic mice, this study demonstrates that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Athanasios Metaxas ◽  
Camilla Thygesen ◽  
Stefan J. Kempf ◽  
Marco Anzalone ◽  
Ramanan Vaitheeswaran ◽  
...  

Abstract Despite compelling evidence that the accumulation of amyloid-beta (Aβ) promotes neocortical MAPT (tau) aggregation in familial and idiopathic Alzheimer’s disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. In the present study, we show that tau can accumulate spontaneously in aged transgenic APPswe/PS1ΔE9 mice. Tau pathology is abundant around Aβ deposits, and further characterized by accumulation of Gallyas and thioflavin-S-positive inclusions, which were detected in the APPswe/PS1ΔE9 brain at 18 months of age. Age-dependent increases in argyrophilia correlated positively with binding levels of the paired helical filament (PHF) tracer [18F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Quantitative proteomics identified sequences of hyperphosphorylated and three-repeat tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Tissue from the frontal gyrus of human subjects was used to validate these findings, revealing primarily quantitative differences between the tau pathology observed in AD patient vs. transgenic mouse tissue. As physiological levels of endogenous, ‘wild-type’ tau aggregate secondarily to Aβ in APPswe/PS1ΔE9 mice, this study suggests that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.


Author(s):  
Zhiva Skachokova ◽  
Alfonso Martinisi ◽  
Martin Flach ◽  
Frederik Sprenger ◽  
Yvonne Naegelin ◽  
...  

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 966-966
Author(s):  
Addison Ali ◽  
Kristeen Pareja ◽  
Tara Tracy

Abstract Alzheimer’s disease (AD) is a neurodegenerative disorder that is characterized by neurofibrillary tangles (NFTs) and amyloid beta plaques. These NFTs are made up of aggregated tau proteins. Tau is involved in stabilizing microtubules and does not usually display aggregation. Acetylation of tau protein causes an increase in tau aggregation but its role in AD progression is still not well understood. I hypothesized that enhanced acetylated tau results in an increase in AD-like tau pathology. To test this, a murine prion promoter-tauKQ transgene was injected into the mouse fertilized oocyte. The tauKQ mutation alters lysine to glutamine to mimic acetylation of tau. Nontransgenic mice were used as controls. AT8 and GT-38 antibodies were used in immunohistochemistry (IHC) to target phosphorylated tau and AD-associated tau, respectively. GT-38 is conformation-dependent and requires 3R and 4R tau isoforms which makes it specific to AD. Through immunofluorescence, increased phosphorylated tau was observed in the hippocampus of the tauKQ mice compared to the nontransgenic mice. I focused on the dentate gyrus, CA1 region, and the mossy fibers of the CA3 region since they are involved in many memory processes. Through chromogenic IHC, the tauKQ mice exhibited more 3R+4R tau isoform pathology in the mossy fibers than the nontransgenic mice. This data suggests that an acetylation mimic is sufficient to stimulate an abundance of AD-related tau pathology in transgenic mice which is consistent with my hypothesis. The tauKQ mouse model can assist in understanding the role of tau acetylation and tau progression for AD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
V. Korzhova ◽  
P. Marinković ◽  
J. Rudan Njavro ◽  
P. M. Goltstein ◽  
F. Sun ◽  
...  

AbstractAlzheimer’s disease (AD) is associated with aberrant neuronal activity, which is believed to critically determine disease symptoms. How these activity alterations emerge, how stable they are over time, and whether cellular activity dynamics are affected by the amyloid plaque pathology remains incompletely understood. We here repeatedly recorded the activity from identified neurons in cortex of awake APPPS1 transgenic mice over four weeks during the early phase of plaque deposition using in vivo two-photon calcium imaging. We found that aberrant activity during this stage largely persisted over the observation time. Novel highly active neurons slowly emerged from former intermediately active neurons. Furthermore, activity fluctuations were independent of plaque proximity, but aberrant activity was more likely to persist close to plaques. These results support the notion that neuronal network pathology observed in models of cerebral amyloidosis is the consequence of persistent single cell aberrant neuronal activity, a finding of potential diagnostic and therapeutic relevance for AD.


2019 ◽  
Vol 16 (8) ◽  
pp. 723-731 ◽  
Author(s):  
Alexander Sturzu ◽  
Sumbla Sheikh ◽  
Hubert Kalbacher ◽  
Thomas Nägele ◽  
Christopher Weidenmaier ◽  
...  

Background: Curcumin has been of interest in the field of Alzheimer’s disease. Early studies on transgenic mice showed promising results in the reduction of amyloid plaques.However, curcumin is very poorly soluble in aqueous solutions and not easily accessible to coupling as it contains only phenolic groups as potential coupling sites. For these reasons only few imaging studies using curcumin bound as an ester were performed and curcumin is mainly used as nutritional supplement. Methods: In the present study we produced an aminoethyl ether derivative of curcumin using a nucleophilic substitution reaction. This is a small modification and should not impact the properties of curcumin while introducing an easily accessible reactive amino group. This novel compound could be used to couple curcumin to other molecules using the standard methods of peptide synthesis. We studied the aminoethyl-curcumin compound and a tripeptide carrying this aminoethyl-curcumin and the fluorescent dye fluorescein (FITC-curcumin) in vitro on cell culture using confocal laser scanning microscopy and flow cytometry. Then these two substances were tested ex vivo on brain sections prepared from transgenic mice depicting Alzheimer-like β-amyloid plaques. Results: In the in vitro CLSM microscopy and flow cytometry experiments we found dot-like unspecific uptake and only slight cytotoxicity correlating with this uptake. As these measurements were optimized for the use of fluorescein as dye we found that the curcumin at 488nm fluorescence excitation was not strong enough to use it as a fluorescence marker in these applications. In the ex vivo sections CLSM experiments both the aminoethyl-curcumin and the FITC-curcumin peptide bound specifically to β- amyloid plaques. Conclusion: In conclusion we successfully produced a novel curcumin derivative which could easily be coupled to other imaging or therapeutic molecules as a sensor for amyloid plaques.


2020 ◽  
Vol 17 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Dan Wang ◽  
Zhifu Fei ◽  
Song Luo ◽  
Hai Wang

Objectives: Alzheimer's disease (AD), also known as senile dementia, is a common neurodegenerative disease characterized by progressive cognitive impairment and personality changes. Numerous evidences have suggested that microRNAs (miRNAs) are involved in the pathogenesis and development of AD. However, the exact role of miR-335-5p in the progression of AD is still not clearly clarified. Methods: The protein and mRNA levels were measured by western blot and RNA extraction and quantitative real-time PCR (qRT-PCR), respectively. The relationship between miR-335-5p and c-jun-N-terminal kinase 3 (JNK3) was confirmed by dual-luciferase reporter assay. SH-SY5Y cells were transfected with APP mutant gene to establish the in vitro AD cell model. Flow cytometry and western blot were performed to evaluate cell apoptosis. The APP/PS1 transgenic mice were used as an in vivo AD model. Morris water maze test was performed to assess the effect of miR- 335-5p on the cognitive deficits in APP/PS1 transgenic mice. Results: The JNK3 mRNA expression and protein levels of JNK3 and β-Amyloid (Aβ) were significantly up-regulated, and the mRNA expression of miR-335-5p was down-regulated in the brain tissues of AD patients. The expression levels of miR-335-5p and JNK3 were significantly inversely correlated. Further, the dual Luciferase assay verified the relationship between miR-335- 5p and JNK3. Overexpression of miR-335-5p significantly decreased the protein levels of JNK3 and Aβ and inhibited apoptosis in SH-SY5Y/APPswe cells, whereas the inhibition of miR-335-5p obtained the opposite results. Moreover, the overexpression of miR-335-5p remarkably improved the cognitive abilities of APP/PS1 mice. Conclusion: The results revealed that the increased JNK3 expression, negatively regulated by miR-335-5p, may be a potential mechanism that contributes to Aβ accumulation and AD progression, indicating a novel approach for AD treatment.


2020 ◽  
Vol 13 (4) ◽  
pp. 273-294 ◽  
Author(s):  
Elahe Zarini-Gakiye ◽  
Javad Amini ◽  
Nima Sanadgol ◽  
Gholamhassan Vaezi ◽  
Kazem Parivar

Background: Alzheimer’s disease (AD) is the most frequent subtype of incurable neurodegenerative dementias and its etiopathology is still not clearly elucidated. Objective: Outline the ongoing clinical trials (CTs) in the field of AD, in order to find novel master regulators. Methods: We strictly reviewed all scientific reports from Clinicaltrials.gov and PubMed databases from January 2010 to January 2019. The search terms were “Alzheimer's disease” or “dementia” and “medicine” or “drug” or “treatment” and “clinical trials” and “interventions”. Manuscripts that met the objective of this study were included for further evaluations. Results: Drug candidates have been categorized into two main groups including antibodies, peptides or hormones (such as Ponezumab, Interferon β-1a, Solanezumab, Filgrastim, Levemir, Apidra, and Estrogen), and naturally-derived ingredients or small molecules (such as Paracetamol, Ginkgo, Escitalopram, Simvastatin, Cilostazo, and Ritalin-SR). The majority of natural candidates acted as anti-inflammatory or/and anti-oxidant and antibodies exert their actions via increasing amyloid-beta (Aβ) clearance or decreasing Tau aggregation. Among small molecules, most of them that are present in the last phases act as specific antagonists (Suvorexant, Idalopirdine, Intepirdine, Trazodone, Carvedilol, and Risperidone) or agonists (Dextromethorphan, Resveratrol, Brexpiprazole) and frequently ameliorate cognitive dysfunctions. Conclusion: The presences of a small number of candidates in the last phase suggest that a large number of candidates have had an undesirable side effect or were unable to pass essential eligibility for future phases. Among successful treatment approaches, clearance of Aβ, recovery of cognitive deficits, and control of acute neuroinflammation are widely chosen. It is predicted that some FDA-approved drugs, such as Paracetamol, Risperidone, Escitalopram, Simvastatin, Cilostazoand, and Ritalin-SR, could also be used in off-label ways for AD. This review improves our ability to recognize novel treatments for AD and suggests approaches for the clinical trial design for this devastating disease in the near future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lishu Duan ◽  
Mufeng Hu ◽  
Joseph A. Tamm ◽  
Yelena Y. Grinberg ◽  
Fang Shen ◽  
...  

AbstractAlzheimer’s disease (AD) is a common neurodegenerative disease with poor prognosis. New options for drug discovery targets are needed. We developed an imaging based arrayed CRISPR method to interrogate the human genome for modulation of in vitro correlates of AD features, and used this to assess 1525 human genes related to tau aggregation, autophagy and mitochondria. This work revealed (I) a network of tau aggregation modulators including the NF-κB pathway and inflammatory signaling, (II) a correlation between mitochondrial morphology, respiratory function and transcriptomics, (III) machine learning predicted novel roles of genes and pathways in autophagic processes and (IV) individual gene function inferences and interactions among biological processes via multi-feature clustering. These studies provide a platform to interrogate underexplored aspects of AD biology and offer several specific hypotheses for future drug discovery efforts.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yuxing Xia ◽  
Stefan Prokop ◽  
Benoit I. Giasson

AbstractPhosphorylation is one of the most prevalent post-translational modifications found in aggregated tau isolated from Alzheimer’s disease (AD) patient brains. In tauopathies like AD, increased phosphorylation or hyperphosphorylation can contribute to microtubule dysfunction and is associated with tau aggregation. In this review, we provide an overview of the structure and functions of tau protein as well as the physiologic roles of tau phosphorylation. We also extensively survey tau phosphorylation sites identified in brain tissue and cerebrospinal fluid from AD patients compared to age-matched healthy controls, which may serve as disease-specific biomarkers. Recently, new assays have been developed to measure minute amounts of specific forms of phosphorylated tau in both cerebrospinal fluid and plasma, which could potentially be useful for aiding clinical diagnosis and monitoring disease progression. Additionally, multiple therapies targeting phosphorylated tau are in various stages of clinical trials including kinase inhibitors, phosphatase activators, and tau immunotherapy. With promising early results, therapies that target phosphorylated tau  could be useful at slowing tau hyperphosphorylation and aggregation in AD and other tauopathies.


Sign in / Sign up

Export Citation Format

Share Document