scholarly journals Germline-Restricted Chromosome (GRC) is Widespread among Songbirds

2018 ◽  
Author(s):  
Anna A. Torgasheva ◽  
Lyubov P. Malinovskaya ◽  
Kira S. Zadesenets ◽  
Tatyana V. Karamysheva ◽  
Elena A. Kizilova ◽  
...  

AbstractThe genome of flying birds, the smallest among amniotes, reflects overweight of the extensive DNA loss over the unrestricted proliferation of selfish genetic elements, resulted in a shortage of repeated sequences and lack of B-chromosomes. The only exception of this rule has been described in zebra finch, which possesses a large germ-line restricted chromosome (GRC), transmitted via oocytes, eliminated from male postmeiotic cells and absent in somatic cell. It is considered as a rarity and its origin, content and function remain unclear. We discovered that all songbirds possess GRC: in various size and genetic content it is present in all fifteen songbird species investigated and absent from germ-line genomes of all eight species of other bird orders examined. Our data based on fluorescent in situ hybridization of DNA probes derived from GRCs of four different Passeri species and their sequencing indicate that the GRCs show low homology between avian species. They contain fragments of the somatic genomes, which include various unique and repetitive sequences. We propose that the GRC has formed in the common ancestor of the extant songbirds and undergone subsequent divergence. GRC presence in the germ line of every songbird studied indicate that it could contain genetic element(s) indispensable for gametogenesis, which are yet to be discovered.

Author(s):  
Anna A. Torgasheva ◽  
Lyubov P. Malinovskaya ◽  
Kira S. Zadesenets ◽  
Tatyana V. Karamysheva ◽  
Elena A. Kizilova ◽  
...  

An unusual supernumerary chromosome has been reported for two related avian species, the zebra and Bengalese finches. This large, germline-restricted chromosome (GRC) is eliminated from somatic cells and spermatids and transmitted via oocytes only. Its origin, distribution among avian lineages, and function were mostly unknown so far. Using immunolocalization of key meiotic proteins, we found that GRCs of varying size and genetic content are present in all 16 songbird species investigated and absent from germline genomes of all eight examined bird species from other avian orders. Results of fluorescent in situ hybridization of microdissected GRC probes and their sequencing indicate that GRCs show little homology between songbird species and contain a variety of repetitive elements and unique sequences with paralogs in the somatic genome. Our data suggest that the GRC evolved in the common ancestor of all songbirds and underwent significant changes in the extant descendant lineages.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8344
Author(s):  
Hejun Lu ◽  
Xinglei Cui ◽  
Yanyan Zhao ◽  
Richard Odongo Magwanga ◽  
Pengcheng Li ◽  
...  

The activity of genome-specific repetitive sequences is the main cause of genome variation between Gossypium A and D genomes. Through comparative analysis of the two genomes, we retrieved a repetitive element termed ICRd motif, which appears frequently in the diploid Gossypium raimondii (D5) genome but rarely in the diploid Gossypium arboreum (A2) genome. We further explored the existence of the ICRd motif in chromosomes of G. raimondii, G. arboreum, and two tetraploid (AADD) cotton species, Gossypium hirsutum and Gossypium barbadense, by fluorescence in situ hybridization (FISH), and observed that the ICRd motif exists in the D5 and D-subgenomes but not in the A2 and A-subgenomes. The ICRd motif comprises two components, a variable tandem repeat (TR) region and a conservative sequence (CS). The two constituents each have hundreds of repeats that evenly distribute across 13 chromosomes of the D5genome. The ICRd motif (and its repeats) was revealed as the common conservative region harbored by ancient Long Terminal Repeat Retrotransposons. Identification and investigation of the ICRd motif promotes the study of A and D genome differences, facilitates research on Gossypium genome evolution, and provides assistance to subgenome identification and genome assembling.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Amjad Askary ◽  
Joanna Smeeton ◽  
Sandeep Paul ◽  
Simone Schindler ◽  
Ingo Braasch ◽  
...  

Synovial joints are the lubricated connections between the bones of our body that are commonly affected in arthritis. It is assumed that synovial joints first evolved as vertebrates came to land, with ray-finned fishes lacking lubricated joints. Here, we examine the expression and function of a critical lubricating protein of mammalian synovial joints, Prg4/Lubricin, in diverse ray-finned fishes. We find that Prg4 homologs are specifically enriched at the jaw and pectoral fin joints of zebrafish, stickleback, and gar, with genetic deletion of the zebrafish prg4b gene resulting in the same age-related degeneration of joints as seen in lubricin-deficient mice and humans. Our data support lubricated synovial joints evolving much earlier than currently accepted, at least in the common ancestor of all bony vertebrates. Establishment of the first arthritis model in the highly regenerative zebrafish will offer unique opportunities to understand the aetiology and possible treatment of synovial joint disease.


Genome ◽  
2006 ◽  
Vol 49 (8) ◽  
pp. 1023-1035 ◽  
Author(s):  
Elena A Salina ◽  
K Yoong Lim ◽  
Ekaterina D Badaeva ◽  
Andrey B Shcherban ◽  
Irina G Adonina ◽  
...  

The evolution of 2 tandemly repeated sequences Spelt1 and Spelt52 was studied in Triticum species representing 2 evolutionary lineages of wheat and in Aegilops sect. Sitopsis, putative donors of their B/G genomes. Using fluorescence in situ hybridization we observed considerable polymorphisms in the hybridization patterns of Spelt1 and Spelt52 repeats between and within Triticum and Aegilops species. Between 2 and 28 subtelomeric sites of Spelt1 probe were detected in Ae. speltoidies, depending on accession. From 8 to 12 Spelt1 subtelomeric sites were observed in species of Timopheevi group (GAt genome), whereas the number of signals in emmer/aestivum accessions was significantly less (from 0 to 6). Hybridization patterns of Spelt52 in Ae. speltoides, Ae. longissima, and Ae. sharonensis were species specific. Subtelomeric sites of Spelt52 repeat were detected only in T. araraticum (T. timopheevii), and their number and chromosomal location varied between accessions. Superimposing copy number data onto our phylogenetic scheme constructed from RAPD data suggests 2 major independent amplifications of Spelt52 and 1 of Spelt1 repeats in Aegilops divergence. It is likely that the Spelt1 amplification took place in the ancient Ae. speltoides before the divergence of polyploid wheats. The Spelt52 repeat was probably amplified in the lineage of Ae. speltoides prior to divergence of the allopolyploid T. timopheevii but after the divergence of T. durum. In a separate amplification event, Spelt52 copy number expanded in the common ancestor of Ae. longissima and Ae. sharonensis.Key words: evolution, RAPD, subtelomeric tandem repeats, Aegilops, wheat, B and G genome.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marianna Török ◽  
Petra Merkely ◽  
Anna Monori-Kiss ◽  
Eszter Mária Horváth ◽  
Réka Eszter Sziva ◽  
...  

Abstract Background We aimed to identify sex differences in the network properties and to recognize the geometric alteration effects of long-term swim training in a rat model of exercise-induced left ventricular (LV) hypertrophy. Methods Thirty-eight Wistar rats were divided into four groups: male sedentary, female sedentary, male exercised and female exercised. After training sessions, LV morphology and function were checked by echocardiography. The geometry of the left coronary artery system was analysed on pressure-perfused, microsurgically prepared resistance artery networks using in situ video microscopy. All segments over > 80 μm in diameter were studied using divided 50-μm-long cylindrical ring units of the networks. Oxidative-nitrative (O-N) stress markers, adenosine A2A and estrogen receptor (ER) were investigated by immunohistochemistry. Results The LV mass index, ejection fraction and fractional shortening significantly increased in exercised animals. We found substantial sex differences in the coronary network in the control groups and in the swim-trained animals. Ring frequency spectra were significantly different between male and female animals in both the sedentary and trained groups. The thickness of the wall was higher in males as a result of training. There were elevations in the populations of 200- and 400-μm vessel units in males; the thinner ones developed farther and the thicker ones closer to the orifice. In females, a new population of 200- to 250-μm vessels appeared unusually close to the orifice. Conclusions Physical activity and LV hypertrophy were accompanied by a remodelling of coronary resistance artery network geometry that was different in both sexes.


2020 ◽  
Vol 92 (6) ◽  
pp. 977-984
Author(s):  
Mayya V. Kulikova ◽  
Albert B. Kulikov ◽  
Alexey E. Kuz’min ◽  
Anton L. Maximov

AbstractFor previously studied Fischer–Tropsch nanosized Fe catalyst slurries, polymer compounds with or without polyconjugating structures are used as precursors to form the catalyst nanomatrix in situ, and several catalytic experiments and X-ray diffraction and atomic force microscopy measurements are performed. The important and different roles of the paraffin molecules in the slurry medium in the formation and function of composite catalysts with the two types of aforementioned polymer matrices are revealed. In the case of the polyconjugated polymers, the alkanes in the medium are “weakly” coordinated with the metal-polymer composites, which does not affect the effectiveness of the polyconjugated polymers. Otherwise, alkane molecules form a “tight” surface layer around the composite particles, which create transport complications for the reagents and products of Fischer-Tropsch synthesis and, in some cases, can change the course of the in situ catalyst formation.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 365-374 ◽  
Author(s):  
Allan R Lohe ◽  
Daniel L Hartl

Abstract An important goal in molecular genetics has been to identify a transposable element that might serve as an efficient transformation vector in diverse species of insects. The transposable element mariner occurs naturally in a wide variety of insects. Although virtually all mariner elements are nonfunctional, the Mosl element isolated from Drosophila mauritiana is functional. Mosl was injected into the pole-cell region of embryos of D. virilis, which last shared a common ancestor with D. mauritiana 40 million years ago. Mosl PCR fragments were detected in several pools of DNA from progeny of injected animals, and backcross lines were established. Because Go lines were pooled, possibly only one transformation event was actually obtained, yielding a minimum frequency of 4%. Mosl segregated in a Mendelian fashion, demonstrating chromosomal integration. The copy number increased by spontaneous mobilization. In situ hybridization confirmed multiple polymorphic locations of Mosl. Integration results in a characteristic 2-bp TA duplication. One Mosl element integrated into a tandem array of 370-bp repeats. Some copies may have integrated into heterochromatin, as evidenced by their ability to support PCR amplification despite absence of a signal in Southern and in situ hybridizations.


1983 ◽  
Vol 38 (5-6) ◽  
pp. 501-504 ◽  
Author(s):  
Mária Ujhelyi

Seryl tRNA (anticodon GCU) from mammalian mito­chondria shows in comparison to other mitochondrial tRNAs additional special features differing from the generalized tRNA model. When arranged in the tradi­tional cloverleaf form, eight bases fall within the TΨC loop, and the entire dihydrouridine loop is lacking. This seryl tRNA molecule is therefore shorter than other tRNAs. It was originally thought to represent a mito­chondrial analogon of 5 S rRNA and its precise classifica­tion is still disputed. The present studies suggest that this mitochondrial tRNA represents a fossil molecule which is related to the common ancestor of the present tRNA and 5 S rRNA molecules.


Sign in / Sign up

Export Citation Format

Share Document