scholarly journals Recruit symbiosis establishment and Symbiodiniceae composition influenced by adult corals and reef sediment

2018 ◽  
Author(s):  
A Ali ◽  
N Kriefall ◽  
LE Emery ◽  
CD Kenkel ◽  
MV Matz ◽  
...  

ABSTRACTFor most reef-building corals, the establishment of symbiosis occurs via horizontal transmission, where juvenile coral recruits acquire their algal symbionts (family Symbiodiniaceae) from their surrounding environment post-settlement. This transmission strategy allows corals to interact with a diverse array of symbionts, potentially facilitating adaptation to the newly settled environment. We exposed aposymbiotic Pseudodiploria strigosa recruits from the Flower Garden Banks to natal reef sediment (C-S+), symbiotic adult coral fragments (C+S-), sediment and coral fragments (C+S+), or seawater controls (C-S-) and quantified rates of symbiont uptake and Symbiodiniaceae community composition within each recruit using metabarcoding of the ITS2 locus. The most rapid uptake was observed in C+S+ treatments and this combination also led to the highest symbiont alpha diversity in recruits. While C-S+ treatments exhibited the next highest uptake rate, only one individual recruit successfully established symbiosis in the C+S-treatment, suggesting that sediment both serves as a direct symbiont source for coral recruits and promotes (or, potentially, mediates) transmission from adult coral colonies. In turn, presence of adult corals facilitated uptake from the sediment, perhaps via chemical signaling. Taken together, our results reinforce the key role of sediment in algal symbiont uptake by P. strigosa recruits and suggest that sediment plays a necessary, but perhaps not sufficient, role in the life cycle of the algal Symbiodinaceae symbionts.

Author(s):  
John A. Burns ◽  
Ryan Kerney ◽  
Solange Duhamel

AbstractThe unique symbiosis between a vertebrate salamander, Ambystoma maculatum, and unicellular green alga, Oophila amblystomatis, involves multiple modes of interaction. These include an ectosymbiotic interaction where the alga colonizes the egg capsule, and an intracellular interaction where the alga enters tissues and cells of the salamander. One common interaction in mutualist photosymbioses is the transfer of photosynthate from the algal symbiont to the host animal. In the A. maculatum-O. amblystomatis interaction, there is conflicting evidence regarding whether the algae in the egg capsule transfer chemical energy captured during photosynthesis to the developing salamander embryo. In experiments where we took care to separate the carbon fixation contributions of the salamander embryo and algal symbionts, we show that inorganic carbon fixed by A. maculatum embryos reaches 2% of the inorganic carbon fixed by O. amblystomatis algae within an egg capsule after 2 hours in the light. After 2 hours in the dark, inorganic carbon fixed by A. maculatum embryos is 800% of the carbon fixed by O. amblystomatis algae within an egg capsule. Using photosynthesis inhibitors we show that A. maculatum embryos and O. amblystomatis algae compete for available inorganic carbon within the egg capsule environment. Our results confirm earlier studies suggesting a role of heterotrophic carbon fixation during vertebrate embryonic development. Our results also show that the considerable capacity of developing A. maculatum embryos for inorganic carbon fixation precludes our ability to distinguish any minor role of photosynthetically transferred carbon from algal symbionts to host salamanders using bicarbonate introduced to the egg system as a marker.


2019 ◽  
Author(s):  
SW Davies ◽  
K Moreland ◽  
DC Wham ◽  
MR Kanke ◽  
MV Matz

AbstractMany broadly-dispersing corals acquire their algal symbionts (Symbiodiniaceae) ‘horizontally’ from their environment upon recruitment. Horizontal transmission could promote coral fitness across diverse environments provided that corals can associate with divergent algae across their range and that these symbionts exhibit reduced dispersal potential. Here we quantified community divergence of Cladocopium algal symbionts in two coral host species (Acropora hyacinthus, Acropora digitifera) across two spatial scales (reefs on the same island, and between islands) across the Micronesian archipelago using microsatellites. We find that both hosts associated with two genetically distinct Cladocopium lineages (C40, C21), confirming that Acropora coral hosts associate with a range of Cladocopium symbionts across this region. Both C40 and C21 exhibited extensive clonality. Clones not only existed across host conspecifics living on the same reef, but also spanned host species, reef sites within islands, and even different islands. Both Cladocopium lineages exhibited moderate host specialization and divergence across islands. In addition, within every island, algal symbiont communities were significantly clustered by both host species and reef site, highlighting that coral-associated Cladocopium communities are structured across small spatial scales and within hosts on the same reef. This is in stark contrast to their coral hosts, which never exhibited significant genetic divergence between reefs on the same island. These results support the view that horizontal transmission could improve local fitness for broadly dispersing Acropora coral species.


2016 ◽  
Author(s):  
SW Davies ◽  
FC Wham ◽  
MR Kanke ◽  
MV Matz

AbstractMany reef-building corals acquire their algal symbionts (Symbiodinium sp.) from the local environment upon recruitment. This horizontal transmission strategy where hosts pair with locally available symbionts could serve to increase coral fitness across diverse environments, as long as hosts maintain high promiscuity and symbionts adapt locally. Here, we tested this hypothesis in two coral species by comparing host and symbiont genetic structures across different spatial scales in Micronesia. Each host species associated with two genetically distinct Symbiodinium lineages, confirming high promiscuity in broadly dispersing hosts. However, contrary to our initial expectation, symbiont genetic structure was independent of physical barriers to dispersal between islands, unlike genetic structure of their hosts that was nearly perfectly explained by ocean currents. Instead, Symbiodinium consistently demonstrated genetic divergence among local reefs and between the two host species at each island, although not necessarily between distant islands. These observations indicate that Symbiodinium lineages disperse much more broadly than previously thought and continuously adapt to specific hosts and reef environments across their range, following the classical Baas Becking’s hypothesis: “Everything is everywhere, but the environment selects”. Overall, our findings confirm that horizontal transmission could be a mechanism for broadly dispersing coral species to enhance their local fitness by associating with locally adapted symbionts. Dramatic differences in factors driving the genetic structures of horizontally-transmitting corals and their Symbiodinium imply that viewing their combined genomes as a single entity (‘hologenome’) would not be useful in the context of their evolution and adaptation.


Author(s):  
Petar Halachev ◽  
Victoria Radeva ◽  
Albena Nikiforova ◽  
Miglena Veneva

This report is dedicated to the role of the web site as an important tool for presenting business on the Internet. Classification of site types has been made in terms of their application in the business and the types of structures in their construction. The Models of the Life Cycle for designing business websites are analyzed and are outlined their strengths and weaknesses. The stages in the design, construction, commissioning, and maintenance of a business website are distinguished and the activities and requirements of each stage are specified.


2021 ◽  
Vol 22 (9) ◽  
pp. 4438
Author(s):  
Jessica Proulx ◽  
Kathleen Borgmann ◽  
In-Woo Park

The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 887
Author(s):  
Gaël Runel ◽  
Noémie Lopez-Ramirez ◽  
Julien Chlasta ◽  
Ingrid Masse

Since the crucial role of the microenvironment has been highlighted, many studies have been focused on the role of biomechanics in cancer cell growth and the invasion of the surrounding environment. Despite the search in recent years for molecular biomarkers to try to classify and stratify cancers, much effort needs to be made to take account of morphological and nanomechanical parameters that could provide supplementary information concerning tissue complexity adaptation during cancer development. The biomechanical properties of cancer cells and their surrounding extracellular matrix have actually been proposed as promising biomarkers for cancer diagnosis and prognosis. The present review first describes the main methods used to study the mechanical properties of cancer cells. Then, we address the nanomechanical description of cultured cancer cells and the crucial role of the cytoskeleton for biomechanics linked with cell morphology. Finally, we depict how studying interaction of tumor cells with their surrounding microenvironment is crucial to integrating biomechanical properties in our understanding of tumor growth and local invasion.


2021 ◽  
Vol 22 (2) ◽  
pp. 643
Author(s):  
Xiao Li ◽  
Fen Wang ◽  
Yanyan Xu ◽  
Guijun Liu ◽  
Caihong Dong

Hydrophobins are a family of small secreted proteins found exclusively in fungi, and they play various roles in the life cycle. In the present study, genome wide analysis and transcript profiling of the hydrophobin family in Cordyceps militaris, a well-known edible and medicinal mushroom, were studied. The distribution of hydrophobins in ascomycetes with different lifestyles showed that pathogenic fungi had significantly more hydrophobins than saprotrophic fungi, and class II members accounted for the majority. Phylogenetic analysis of hydrophobin proteins from the species of Cordyceps s.l. indicated that there was more variability among the class II members than class I. Only a few hydrophobin-encoding genes evolved by duplication in Cordyceps s.l., which was inconsistent with the important role of gene duplication in basidiomycetes. Different transcript patterns of four hydrophobin-encoding genes during the life cycle indicated the possible different functions for each. The transcripts of Cmhyd2, 3 and 4 can respond to light and were related with the photoreceptors. CmQHYD, with four hydrophobin II domains, was first found in C. militaris, and multi-domain hydrophobins were only distributed in the species of Cordycipitaceae and Clavicipitaceae. These results could be helpful for further function research of hydrophobins and could provide valuable information for the evolution of hydrophobins.


Sign in / Sign up

Export Citation Format

Share Document