scholarly journals CrRLK1L receptor-like kinases HERCULES RECEPTOR KINASE 1 and ANJEA are female determinants of pollen tube reception

2018 ◽  
Author(s):  
Sergio Galindo-Trigo ◽  
Noel Blanco-Touriñán ◽  
Thomas A. DeFalco ◽  
Eloise S. Wells ◽  
Julie E Gray ◽  
...  

AbstractCommunication between the gametophytes is vital for angiosperm fertilisation. Multiple CrRLK1L-type receptor kinases prevent premature pollen tube burst, while another CrRLK1L protein, FERONIA (FER), is required for pollen tube burst in the female gametophyte. We report here the identification of two additional CrRLK1L homologues, HERCULES RECEPTOR KINASE 1 (HERK1) and ANJEA (ANJ), which act redundantly to promote pollen tube burst at the synergid cells. HERK1 and ANJ localise to the filiform apparatus of the synergid cells in unfertilised ovules, and in herk1 anj mutants a majority of ovules remain unfertilised due to pollen tube overgrowth, together indicating that HERK1 and ANJ act as female determinants for fertilisation. As in fer mutants, the synergid cell-specific, endomembrane protein NORTIA (NTA) is not relocalised after pollen tube reception; however, unlike fer mutants, reactive oxygen species levels are unaffected in herk1 anj double mutants. Both ANJ and HERK1 associate with FER and its proposed co-receptor LORELEI (LRE) in planta. Together, our data indicate that HERK1 and ANJ act with FER to mediate female-male gametophyte interactions during plant fertilisation.


Development ◽  
2000 ◽  
Vol 127 (20) ◽  
pp. 4511-4518 ◽  
Author(s):  
K.K. Shimizu ◽  
K. Okada

Sexual reproduction in plants, unlike that of animals, requires the action of multicellular haploid gametophytes. The male gametophyte (pollen tube) is guided to a female gametophyte through diploid sporophytic cells in the pistil. While interactions between the pollen tube and diploid cells have been described, little is known about the intercellular recognition systems between the pollen tube and the female gametophyte. In particular, the mechanisms that enable only one pollen tube to interact with each female gametophyte, thereby preventing polysperm, are not understood. We isolated female gametophyte mutants named magatama (maa) from Arabidopsis thaliana by screening for siliques containing half the normal number of mature seeds. In maa1 and maa3 mutants, in which the development of the female gametophyte was delayed, pollen tube guidance was affected. Pollen tubes were directed to mutant female gametophytes, but they lost their way just before entering the micropyle and elongated in random directions. Moreover, the mutant female gametophytes attracted two pollen tubes at a high frequency. To explain the interaction between gametophytes, we propose a monogamy model in which a female gametophyte emits two attractants and prevents polyspermy. This prevention process by the female gametophyte could increase a plant's inclusive fitness by facilitating the fertilization of sibling female gametophytes. In addition, repulsion between pollen tubes might help prevent polyspermy. The reproductive isolations observed in interspecific crosses in Brassicaceae are also consistent with the monogamy model.



2021 ◽  
Author(s):  
Jennifer A. Noble ◽  
Alex Seddon ◽  
Sahra Uygun ◽  
Steven E. Smith ◽  
Shin-Han Shiu ◽  
...  

Synergid cells in the micropylar end of the female gametophyte are required for critical cell-cell signaling interactions between the pollen tube and the ovule that precede double fertilization and seed formation in flowering plants. LORELEI (LRE) encodes a GPI-anchored protein that is expressed primarily in the synergid cells, and together with FERONIA, a receptor-like kinase, it controls pollen tube reception by the receptive synergid cell. Still, how LRE expression is controlled in synergid cells remains poorly characterized. We identified candidate cis-regulatory elements enriched in LRE and other synergid cell-expressed genes. One of the candidate motifs (TAATATCT) in the LRE promoter was an uncharacterized variant of the Evening Element motif that we named as the Short Evening Element-like (SEEL) motif. Deletion or point mutations in the SEEL motif of the LRE promoter resulted in decreased reporter expression in synergid cells, demonstrating that the SEEL motif is important for expression of LRE in synergid cells. Additionally, we found that LRE expression is decreased in the loss of function mutants of REVEILLE (RVE) transcription factors, which are clock genes known to bind the SEEL and other closely related motifs. We propose that RVE transcription factors regulate LRE expression in synergid cells by binding to the SEEL motif in the LRE promoter. Identification of a cis-regulatory element and transcription factors involved in the expression of LRE will serve as a foundation to characterize the gene regulatory networks in synergid cells and investigate the potential connection between circadian rhythm and fertilization.



2013 ◽  
Vol 26 (2) ◽  
pp. 93-99 ◽  
Author(s):  
Yehoram Leshem ◽  
Cameron Johnson ◽  
Venkatesan Sundaresan


2015 ◽  
Vol 46 (4) ◽  
pp. 603-615 ◽  
Author(s):  
Józef Bednara

The monosporic, tetranucleate embryo sac of <i>Epilobium palustre (Onagraceae)</i> develops from the micropylar megaspore in a linear tetrad. In mononucleate embryo sacs a peculiar chromatic structure associated with a nucleolus appears in the nucleus. This structure seems to be formed by fibrillar material and is not visible in the subsequant stages of development. A large amount of rough ER cisternae occurs in the late mononucleate stage, during the binucleate stage their contents become optically dense. It the early tetranucleate stage the amount of ER is small, it increases again in the developing synergids and central cell. Numerous amyloplasts present in the mononucleate embryo sac loose their starch grains and some are transformed into cup-shaped plastids or proplastids. They are passed on to each of the embryo sac cells. The growth of the pollen tube ceases immediately after the penetration through the filiform apparatus of a synergid. At the apex of the tube a pore is formed. At the last stages of the penetration the apical part of the pollen tube becomes separated by a transverse partition from the distal part of the tube. The contents of the both parts differ in their internal structure. The distal part contains cytoplasm with numerous organoids, while the apical part is mainly filled with spherical bodies.



2019 ◽  
Author(s):  
Jing Yuan ◽  
Yan Ju ◽  
Daniel S. Jones ◽  
Weiwei Zhang ◽  
Noel Lucca ◽  
...  

AbstractDuring gamete delivery in Arabidopsis thaliana, intercellular communication between the attracted pollen tube and the receptive synergid cell leads to subcellular events in both cells culminating in the rupture of the tip-growing pollen tube and release of the sperm cells to achieve double fertilization. Live imaging of pollen tube reception revealed dynamic subcellular changes that occur in the female synergid cells. Pollen tube arrival triggers the trafficking of NORTIA (NTA) MLO protein from Golgi-associated compartments and the accumulation of endosomes at or near the synergid filiform apparatus, a membrane-rich region that acts as the site of communication between the pollen tube and synergids. Domain swaps and site-directed mutagenesis reveal that NTA’s C-terminal cytoplasmic tail with its calmodulin-binding domain influences the subcellular localization and function of NTA in pollen tube reception and that accumulation of NTA at the filiform apparatus is necessary and sufficient for MLO function in pollen tube reception.



2018 ◽  
Vol 19 (11) ◽  
pp. 3529 ◽  
Author(s):  
Yang-Yang Zheng ◽  
Xian-Ju Lin ◽  
Hui-Min Liang ◽  
Fang-Fei Wang ◽  
Li-Yu Chen

In non-cleistogamous plants, the male gametophyte, the pollen grain is immotile and exploits various agents, such as pollinators, wind, and even water, to arrive to a receptive stigma. The complex process of pollination involves a tubular structure, i.e., the pollen tube, which delivers the two sperm cells to the female gametophyte to enable double fertilization. The pollen tube has to penetrate the stigma, grow in the style tissues, pass through the septum, grow along the funiculus, and navigate to the micropyle of the ovule. It is a long journey for the pollen tube and its two sperm cells before they meet the female gametophyte, and it requires very accurate regulation to perform successful fertilization. In this review, we update the knowledge of molecular dialogues of pollen-pistil interaction, especially the progress of pollen tube activation and guidance, and give perspectives for future research.





2021 ◽  
Vol 40 (2) ◽  
pp. 205-222
Author(s):  
Monica Scali ◽  
Alessandra Moscatelli ◽  
Luca Bini ◽  
Elisabetta Onelli ◽  
Rita Vignani ◽  
...  

AbstractPollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identifyNicotiana tabacumDifferentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC–ESI–MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.



Author(s):  
Ainoa Planas-Riverola ◽  
Enara Markaide ◽  
Ana I. Caño-Delgado


Sign in / Sign up

Export Citation Format

Share Document