Pollen tube-triggered accumulation of NORTIA at the filiform apparatus facilitates fertilization in Arabidopsis thaliana
AbstractDuring gamete delivery in Arabidopsis thaliana, intercellular communication between the attracted pollen tube and the receptive synergid cell leads to subcellular events in both cells culminating in the rupture of the tip-growing pollen tube and release of the sperm cells to achieve double fertilization. Live imaging of pollen tube reception revealed dynamic subcellular changes that occur in the female synergid cells. Pollen tube arrival triggers the trafficking of NORTIA (NTA) MLO protein from Golgi-associated compartments and the accumulation of endosomes at or near the synergid filiform apparatus, a membrane-rich region that acts as the site of communication between the pollen tube and synergids. Domain swaps and site-directed mutagenesis reveal that NTA’s C-terminal cytoplasmic tail with its calmodulin-binding domain influences the subcellular localization and function of NTA in pollen tube reception and that accumulation of NTA at the filiform apparatus is necessary and sufficient for MLO function in pollen tube reception.