scholarly journals The Long Journey of Pollen Tube in the Pistil

2018 ◽  
Vol 19 (11) ◽  
pp. 3529 ◽  
Author(s):  
Yang-Yang Zheng ◽  
Xian-Ju Lin ◽  
Hui-Min Liang ◽  
Fang-Fei Wang ◽  
Li-Yu Chen

In non-cleistogamous plants, the male gametophyte, the pollen grain is immotile and exploits various agents, such as pollinators, wind, and even water, to arrive to a receptive stigma. The complex process of pollination involves a tubular structure, i.e., the pollen tube, which delivers the two sperm cells to the female gametophyte to enable double fertilization. The pollen tube has to penetrate the stigma, grow in the style tissues, pass through the septum, grow along the funiculus, and navigate to the micropyle of the ovule. It is a long journey for the pollen tube and its two sperm cells before they meet the female gametophyte, and it requires very accurate regulation to perform successful fertilization. In this review, we update the knowledge of molecular dialogues of pollen-pistil interaction, especially the progress of pollen tube activation and guidance, and give perspectives for future research.

2010 ◽  
Vol 38 (2) ◽  
pp. 627-630 ◽  
Author(s):  
Mihaela-Luiza Márton ◽  
Thomas Dresselhaus

During the evolution of flowering plants, their sperm cells have lost mobility and are transported from the stigma to the female gametophyte via the pollen tube to achieve double fertilization. Pollen tube growth and guidance is largely governed by the maternal sporophytic tissues of the stigma, style and ovule. However, the last phase of the pollen tube path is under female gametophyte control and is expected to require extensive cell–cell communication events between both gametophytes. Until recently, little was known about the molecules produced by the female gametophyte that are involved in this process. In the present paper, we review the most recent development in this field and focus on the role of secreted candidate signalling ligands.


2015 ◽  
Vol 112 (43) ◽  
pp. 13378-13383 ◽  
Author(s):  
Hua Jiang ◽  
Jun Yi ◽  
Leonor C. Boavida ◽  
Yuan Chen ◽  
Jörg D. Becker ◽  
...  

An Arabidopsis pollen grain (male gametophyte) consists of three cells: the vegetative cell, which forms the pollen tube, and two sperm cells enclosed within the vegetative cell. It is still unclear if there is intercellular communication between the vegetative cell and the sperm cells. Here we show that ABA-hypersensitive germination3 (AHG3), encoding a protein phosphatase, is specifically transcribed in the vegetative cell but predominantly translated in sperm cells. We used a series of deletion constructs and promoter exchanges to document transport of AHG3 transcripts from the vegetative cell to sperm and showed that their transport requires sequences in both the 5′ UTR and the coding region. Thus, in addition its known role in transporting sperm during pollen tube growth, the vegetative cell also contributes transcripts to the sperm cells.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Said Hafidh ◽  
David Honys

The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis—a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell–cell communication within the reproductive tissues. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Development ◽  
2000 ◽  
Vol 127 (20) ◽  
pp. 4511-4518 ◽  
Author(s):  
K.K. Shimizu ◽  
K. Okada

Sexual reproduction in plants, unlike that of animals, requires the action of multicellular haploid gametophytes. The male gametophyte (pollen tube) is guided to a female gametophyte through diploid sporophytic cells in the pistil. While interactions between the pollen tube and diploid cells have been described, little is known about the intercellular recognition systems between the pollen tube and the female gametophyte. In particular, the mechanisms that enable only one pollen tube to interact with each female gametophyte, thereby preventing polysperm, are not understood. We isolated female gametophyte mutants named magatama (maa) from Arabidopsis thaliana by screening for siliques containing half the normal number of mature seeds. In maa1 and maa3 mutants, in which the development of the female gametophyte was delayed, pollen tube guidance was affected. Pollen tubes were directed to mutant female gametophytes, but they lost their way just before entering the micropyle and elongated in random directions. Moreover, the mutant female gametophytes attracted two pollen tubes at a high frequency. To explain the interaction between gametophytes, we propose a monogamy model in which a female gametophyte emits two attractants and prevents polyspermy. This prevention process by the female gametophyte could increase a plant's inclusive fitness by facilitating the fertilization of sibling female gametophytes. In addition, repulsion between pollen tubes might help prevent polyspermy. The reproductive isolations observed in interspecific crosses in Brassicaceae are also consistent with the monogamy model.


2018 ◽  
Author(s):  
Sergio Galindo-Trigo ◽  
Noel Blanco-Touriñán ◽  
Thomas A. DeFalco ◽  
Eloise S. Wells ◽  
Julie E Gray ◽  
...  

AbstractCommunication between the gametophytes is vital for angiosperm fertilisation. Multiple CrRLK1L-type receptor kinases prevent premature pollen tube burst, while another CrRLK1L protein, FERONIA (FER), is required for pollen tube burst in the female gametophyte. We report here the identification of two additional CrRLK1L homologues, HERCULES RECEPTOR KINASE 1 (HERK1) and ANJEA (ANJ), which act redundantly to promote pollen tube burst at the synergid cells. HERK1 and ANJ localise to the filiform apparatus of the synergid cells in unfertilised ovules, and in herk1 anj mutants a majority of ovules remain unfertilised due to pollen tube overgrowth, together indicating that HERK1 and ANJ act as female determinants for fertilisation. As in fer mutants, the synergid cell-specific, endomembrane protein NORTIA (NTA) is not relocalised after pollen tube reception; however, unlike fer mutants, reactive oxygen species levels are unaffected in herk1 anj double mutants. Both ANJ and HERK1 associate with FER and its proposed co-receptor LORELEI (LRE) in planta. Together, our data indicate that HERK1 and ANJ act with FER to mediate female-male gametophyte interactions during plant fertilisation.


2021 ◽  
Vol 22 (9) ◽  
pp. 4298
Author(s):  
Katarzyna Rafińska ◽  
Katarzyna Niedojadło ◽  
Michał Świdziński ◽  
Janusz Niedojadło ◽  
Elżbieta Bednarska-Kozakiewicz

The role of ArabinoGalactan Proteins (AGPs) in the sexual reproduction of gymnosperms is not as well documented as that of angiosperms. In earlier studies, we demonstrated that AGPs play important roles during ovule differentiation in Larix decidua Mill. The presented results encouraged us to carry out further studies focused on the functions of these unique glycoproteins during pollen/pollen tube and ovule interactions in Larix. We identified and analyzed the localization of AGPs epitopes by JIM4, JIM8, JIM13 and LM2 antibodies (Abs) in male gametophytes and ovule tissue during pollination, the progamic phase, and after fertilization and in vitro growing pollen tubes. Our results indicated that (1) AGPs recognized by JIM4 Abs play an essential role in the interaction of male gametophytes and ovules because their appearance in ovule cells is induced by physical contact between reproductive partners; (2) after pollination, AGPs are secreted from the pollen cytoplasm into the pollen wall and contact the extracellular matrix of stigmatic tip cells followed by micropylar canal cells; (3) AGPs synthesized in nucellus cells before pollen grain germination are secreted during pollen tube growth into the extracellular matrix, where they can directly interact with male gametophytes; (4) in vitro cultured pollen tube AGPs labeled with LM2 Abs participate in the germination of pollen grain, while AGPs recognized by JIM8 Abs are essential for pollen tube tip growth.


2016 ◽  
Vol 2 (10) ◽  
pp. e1600554 ◽  
Author(s):  
Ryushiro D. Kasahara ◽  
Michitaka Notaguchi ◽  
Shiori Nagahara ◽  
Takamasa Suzuki ◽  
Daichi Susaki ◽  
...  

In angiosperms, pollen tubes carry two sperm cells toward the egg and central cells to complete double fertilization. In animals, not only sperm but also seminal plasma is required for proper fertilization. However, little is known regarding the function of pollen tube content (PTC), which is analogous to seminal plasma. We report that the PTC plays a vital role in the prefertilization state and causes an enlargement of ovules without fertilization. We termed this phenomenon as pollen tube–dependent ovule enlargement morphology and placed it between pollen tube guidance and double fertilization. Additionally, PTC increases endosperm nuclei without fertilization when combined with autonomous endosperm mutants. This finding could be applied in agriculture, particularly in enhancing seed formation without fertilization in important crops.


2014 ◽  
Vol 50 (1-2) ◽  
pp. 99-101 ◽  
Author(s):  
S. Tatintseva

Spermiogelnesis has been studied in a large number of Angiosperm species characterizing different levels of phylogenetic system. The formation and development of male gamets can be described as formation of sperm cells that undergo ontogenesis which stimulates changes up to full maturity of the pollen grain. The process of ontogenesis is aimed at creating a suitable delivery system by the pollen tube to a female gamete.


2019 ◽  
Vol 20 (1) ◽  
pp. 209 ◽  
Author(s):  
Stefano Del Duca ◽  
Iris Aloisi ◽  
Luigi Parrotta ◽  
Giampiero Cai

Self-incompatibility (SI) is a complex process, one out of several mechanisms that prevent plants from self-fertilizing to maintain and increase the genetic variability. This process leads to the rejection of the male gametophyte and requires the co-participation of numerous molecules. Plants have evolved two distinct SI systems, the sporophytic (SSI) and the gametophytic (GSI) systems. The two SI systems are markedly characterized by different genes and proteins and each single system can also be divided into distinct subgroups; whatever the mechanism, the purpose is the same, i.e., to prevent self-fertilization. In Malinae, a subtribe in the Rosaceae family, i.e., Pyrus communis and Malus domestica, the GSI requires the production of female determinants, known as S-RNases, which penetrate the pollen tube to interact with the male determinants. Beyond this, the penetration of S-RNase into the pollen tube triggers a series of responses involving membrane proteins, such as phospholipases, intracellular variations of cytoplasmic Ca2+, production of reactive oxygen species (ROS) and altered enzymatic activities, such as that of transglutaminase (TGase). TGases are widespread enzymes that catalyze the post-translational conjugation of polyamines (PAs) to different protein targets and/or the cross-linking of substrate proteins leading to the formation of cross-linked products with high molecular mass. When actin and tubulin are the substrates, this destabilizes the cytoskeleton and inhibits the pollen-tube’s growth process. In this review, we will summarize the current knowledge of the relationship between S-RNase penetration, TGase activity and cytoskeleton function during GSI in the Malinae.


2021 ◽  
Vol 40 (2) ◽  
pp. 205-222
Author(s):  
Monica Scali ◽  
Alessandra Moscatelli ◽  
Luca Bini ◽  
Elisabetta Onelli ◽  
Rita Vignani ◽  
...  

AbstractPollen tube elongation is characterized by a highly-polarized tip growth process dependent on an efficient vesicular transport system and largely mobilized by actin cytoskeleton. Pollen tubes are an ideal model system to study exocytosis, endocytosis, membrane recycling, and signaling network coordinating cellular processes, structural organization and vesicular trafficking activities required for tip growth. Proteomic analysis was applied to identifyNicotiana tabacumDifferentially Abundant Proteins (DAPs) after in vitro pollen tube treatment with membrane trafficking inhibitors Brefeldin A, Ikarugamycin and Wortmannin. Among roughly 360 proteins separated in two-dimensional gel electrophoresis, a total of 40 spots visibly changing between treated and control samples were identified by MALDI-TOF MS and LC–ESI–MS/MS analysis. The identified proteins were classified according to biological processes, and most proteins were related to pollen tube energy metabolism, including ammino acid synthesis and lipid metabolism, structural features of pollen tube growth as well modification and actin cytoskeleton organization, stress response, and protein degradation. In-depth analysis of proteins corresponding to energy-related pathways revealed the male gametophyte to be a reliable model of energy reservoir and dynamics.


Sign in / Sign up

Export Citation Format

Share Document