scholarly journals Analysis of the structural variability of topologically associated domains as revealed by Hi-C

2018 ◽  
Author(s):  
Natalie Sauerwald ◽  
Akshat Singhal ◽  
Carl Kingsford

AbstractThree-dimensional chromosome structure plays an integral role in gene expression and regulation, replication timing, and other cellular processes. Topologically associating domains (TADs), one of the building blocks of chromosome structure, are genomic regions with higher contact frequencies within the region than outside the region. A central question is the degree to which TADs are conserved or vary between conditions. We analyze a set of 137 Hi-C samples from 9 different studies under 3 measures in order to quantify the effects of various sources of biological and experimental variation. We observe significant variation in TAD sets between both non-replicate and replicate samples, and show that this variability does not seem to come from genetic sequence differences. The effects of experimental protocol differences are also measured, demonstrating that samples can have protocol-specific structural changes, but that TADs are generally robust to lab-specific differences. This study represents a systematic quantification of the key factors influencing comparisons of chromosome structure.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Natalie Sauerwald ◽  
Akshat Singhal ◽  
Carl Kingsford

Abstract Three-dimensional chromosome structure plays an integral role in gene expression and regulation, replication timing, and other cellular processes. Topologically associated domains (TADs), building blocks of chromosome structure, are genomic regions with higher contact frequencies within the region than outside the region. A central question is the degree to which TADs are conserved or vary between conditions. We analyze 137 Hi-C samples from 9 studies under 3 measures to quantify the effects of various sources of biological and experimental variation. We observe significant variation in TAD sets between both non-replicate and replicate samples, and provide initial evidence that this variability does not come from genetic sequence differences. The effects of experimental protocol differences are also measured, demonstrating that samples can have protocol-specific structural changes, but that TADs are generally robust to lab-specific differences. This study represents a systematic quantification of key factors influencing comparisons of chromosome structure, suggesting significant variability and the potential for cell-type-specific structural features, which has previously not been systematically explored. The lack of observed influence of heredity and genetic differences on chromosome structure suggests that factors other than the genetic sequence are driving this structure, which plays an important role in human disease and cellular functioning.


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Sailakshmi Velamoor ◽  
Allan Mitchell ◽  
Bruno M. Humbel ◽  
WonMo Kim ◽  
Charlotte Pushparajan ◽  
...  

ABSTRACT Enveloped viruses hijack cellular membranes in order to provide the necessary material for virion assembly. In particular, viruses that replicate and assemble inside the nucleus have developed special approaches to modify the nuclear landscape for their advantage. We used electron microscopy to investigate cellular changes occurring during nudivirus infection and we characterized a unique mechanism for assembly, packaging, and transport of new virions across the nuclear membrane and through the cytoplasm. Our three-dimensional reconstructions describe the complex remodeling of the nuclear membrane necessary to release vesicle-associated viruses into the cytoplasm. This is the first report of nuclear morphological reconfigurations that occur during nudiviral infection. IMPORTANCE The dynamics of nuclear envelope has a critical role in multiple cellular processes. However, little is known regarding the structural changes occurring inside the nucleus or at the inner and outer nuclear membranes. For viruses assembling inside the nucleus, remodeling of the intranuclear membrane plays an important role in the process of virion assembly. Here, we monitored the changes associated with viral infection in the case of nudiviruses. Our data revealed dramatic membrane remodeling inside the nuclear compartment during infection with Oryctes rhinoceros nudivirus, an important biocontrol agent against coconut rhinoceros beetle, a devastating pest for coconut and oil palm trees. Based on these findings, we propose a model for nudivirus assembly in which nuclear packaging occurs in fully enveloped virions.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Agnieszka A. Golicz ◽  
Prem L. Bhalla ◽  
David Edwards ◽  
Mohan B. Singh

AbstractGenomes of many eukaryotic species have a defined three-dimensional architecture critical for cellular processes. They are partitioned into topologically associated domains (TADs), defined as regions of high chromatin inter-connectivity. While TADs are not a prominent feature of A. thaliana genome organization, they have been reported for other plants including rice, maize, tomato and cotton and for which TAD formation appears to be linked to transcription and chromatin epigenetic status. Here we show that in the rice genome, sequence variation and meiotic recombination rate correlate with the 3D genome structure. TADs display increased SNP and SV density and higher recombination rate compared to inter-TAD regions. We associate the observed differences with the TAD epigenetic landscape, TE composition and an increased incidence of meiotic crossovers.


2019 ◽  
Author(s):  
Natalie Sauerwald ◽  
Yihang Shen ◽  
Carl Kingsford

AbstractThree-dimensional chromosome structure has a significant influence in many diverse genomic processes and has recently been shown to relate to cellular differentiation. Many methods for describing the chromosomal architecture focus on specific substructures such as topologically-associating domains (TADs) or compartments, but we are still missing a global view of all geometric features of chromosomes. Topological data analysis (TDA) is a mathematically well-founded set of methods to derive robust information about the structure and topology of data sets, making it well-suited to better understand the key features of chromosome structure. By applying TDA to the study of chromosome structure through differentiation across three cell lines, we provide insight into principles of chromosome folding generally, and observe structural changes across lineages. We identify both global and local differences in chromosome topology through differentiation, identifying trends consistent across human cell lines.AvailabilityScripts to reproduce the results from this study can be found at https://github.com/Kingsford-Group/[email protected]


2017 ◽  
Vol 13 ◽  
pp. 1781-1787 ◽  
Author(s):  
Francisco A Martins ◽  
Josué M Silla ◽  
Matheus P Freitas

2-Haloketones are building blocks that combine physical, chemical and biological features of materials and bioactive compounds, while organic fluorine plays a fundamental role in the design of performance organic molecules. Since these features are dependent on the three-dimensional chemical structure of a molecule, simple structural modifications can affect its conformational stability and, consequently, the corresponding physicochemical/biological property of interest. In this work, structural changes in 2-fluorocyclohexanone were theoretically studied with the aim at finding intramolecular interactions that induce the conformational equilibrium towards the axial or equatorial conformer. The interactions evaluated were hydrogen bonding, hyperconjugation, electrostatic and steric effects. While the gauche effect, originated from hyperconjugative interactions, does not appear to cause some preferences for the axial conformation of organofluorine heterocycles, more classical effects indeed rule the conformational equilibrium of the compounds. Spectroscopic parameters (NMR chemical shifts and coupling constants), which can be useful to determine the stereochemistry and the interactions operating in the series of 2-fluorocyclohexanone derivatives, were also calculated.


Author(s):  
Jane K. Rosenthal ◽  
Dianne L. Atkins ◽  
William J. Marvin ◽  
Penny A. Krumm

To comprehend structural changes in cardiac myocytes accompanying adrenergic innervation, it is essential that a three dimensional analysis be performed. To date, biological studies which utilize stereological methods have been limited to cells in tissue and in organs. Our laboratory has utilized current stereological techniques for measuring absolute volumes of individual myocytes in primary culture. Cell volumes are calculated for two distinct groups of cells at 96 hours in culture: isolated myocytes and myocytes innervated with adrenergic neurons (Figure 1).Cardiac myocytes are cultured from the ventricular apices of newborn rats. Cells are plated directly onto tissue culture dishes with or without preplated explants from the paravertebral thoracolumbar sympathetic chain. On day four cultures are photographed and marked for one-to-one cell location. Following conventional fixation and embeddment in eponate-12, the cells are relocated and mounted for microtomy. The cells are completely sectioned at 120nm in their parallel orientation to the surface of the dish (Figure 2). Serial sections are collected on formvar coated slotted grids and are recorded in sequence.


Author(s):  
Badrinath Roysam ◽  
Hakan Ancin ◽  
Douglas E. Becker ◽  
Robert W. Mackin ◽  
Matthew M. Chestnut ◽  
...  

This paper summarizes recent advances made by this group in the automated three-dimensional (3-D) image analysis of cytological specimens that are much thicker than the depth of field, and much wider than the field of view of the microscope. The imaging of thick samples is motivated by the need to sample large volumes of tissue rapidly, make more accurate measurements than possible with 2-D sampling, and also to perform analysis in a manner that preserves the relative locations and 3-D structures of the cells. The motivation to study specimens much wider than the field of view arises when measurements and insights at the tissue, rather than the cell level are needed.The term “analysis” indicates a activities ranging from cell counting, neuron tracing, cell morphometry, measurement of tracers, through characterization of large populations of cells with regard to higher-level tissue organization by detecting patterns such as 3-D spatial clustering, the presence of subpopulations, and their relationships to each other. Of even more interest are changes in these parameters as a function of development, and as a reaction to external stimuli. There is a widespread need to measure structural changes in tissue caused by toxins, physiologic states, biochemicals, aging, development, and electrochemical or physical stimuli. These agents could affect the number of cells per unit volume of tissue, cell volume and shape, and cause structural changes in individual cells, inter-connections, or subtle changes in higher-level tissue architecture. It is important to process large intact volumes of tissue to achieve adequate sampling and sensitivity to subtle changes. It is desirable to perform such studies rapidly, with utmost automation, and at minimal cost. Automated 3-D image analysis methods offer unique advantages and opportunities, without making simplifying assumptions of tissue uniformity, unlike random sampling methods such as stereology.12 Although stereological methods are known to be statistically unbiased, they may not be statistically efficient. Another disadvantage of sampling methods is the lack of full visual confirmation - an attractive feature of image analysis based methods.


Author(s):  
Gregory J. Czarnota

Chromatin structure at the fundamental level of the nucleosome is important in vital cellular processes. Recent biochemical and genetic analyses show that nucleosome structure and structural changes are very active participants in gene expression, facilitating or inhibiting transcription and reflecting the physiological state of the cell. Structural states and transitions for this macromolecular complex, composed of DNA wound about a heterotypic octamer of variously modified histone proteins, have been measured by physico-chemical techniques and by enzyme-accessibility and are recognized to occur with various post-translational modifications, gene activation, transformation and with ionic-environment. In spite of studies which indicate various forms of nucleosome structure, all current x-ray and neutron diffraction studies have consistently resulted in only one structure, suggestive of a static conformation. In contrast, two-dimensional electron microscopy studies and three-dimensional reconstruction techniques have yielded different structures. These fundamental differences between EM and other ultrastructural studies have created a long standing quandary, which I have addressed and resolved using spectroscopic electron microscopy and statistical analyses of nucleosome images in a study of nucleosome structure with ionic environment.


1999 ◽  
Vol 82 (08) ◽  
pp. 277-282 ◽  
Author(s):  
Yuri Veklich ◽  
Jean-Philippe Collet ◽  
Charles Francis ◽  
John W. Weisel

IntroductionMuch is known about the fibrinolytic system that converts fibrin-bound plasminogen to the active protease, plasmin, using plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator. Plasmin then cleaves fibrin at specific sites and generates soluble fragments, many of which have been characterized, providing the basis for a molecular model of the polypeptide chain degradation.1-3 Soluble degradation products of fibrin have also been characterized by transmission electron microscopy, yielding a model for their structure.4 Moreover, high resolution, three-dimensional structures of certain fibrinogen fragments has provided a wealth of information that may be useful in understanding how various proteins bind to fibrin and the overall process of fibrinolysis (Doolittle, this volume).5,6 Both the rate of fibrinolysis and the structures of soluble derivatives are determined in part by the fibrin network structure itself. Furthermore, the activation of plasminogen by t-PA is accelerated by the conversion of fibrinogen to fibrin, and this reaction is also affected by the structure of the fibrin. For example, clots made of thin fibers have a decreased rate of conversion of plasminogen to plasmin by t-PA, and they generally are lysed more slowly than clots composed of thick fibers.7-9 Under other conditions, however, clots made of thin fibers may be lysed more rapidly.10 In addition, fibrin clots composed of abnormally thin fibers formed from certain dysfibrinogens display decreased plasminogen binding and a lower rate of fibrinolysis.11-13 Therefore, our increasing knowledge of various dysfibrinogenemias will aid our understanding of mechanisms of fibrinolysis (Matsuda, this volume).14,15 To account for these diverse observations and more fully understand the molecular basis of fibrinolysis, more knowledge of the physical changes in the fibrin matrix that precede solubilization is required. In this report, we summarize recent experiments utilizing transmission and scanning electron microscopy and confocal light microscopy to provide information about the structural changes occurring in polymerized fibrin during fibrinolysis. Many of the results of these experiments were unexpected and suggest some aspects of potential molecular mechanisms of fibrinolysis, which will also be described here.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Kamaljit Singh Boparai ◽  
Rupinder Singh

This study highlights the thermal characterization of ABS-Graphene blended three dimensional (3D) printed functional prototypes by fused deposition modeling (FDM) process. These functional prototypes have some applications as electro-chemical energy storage devices (EESD). Initially, the suitability of ABS-Graphene composite material for FDM applications has been examined by melt flow index (MFI) test. After establishing MFI, the feedstock filament for FDM has been prepared by an extrusion process. The fabricated filament has been used for printing 3D functional prototypes for printing of in-house EESD. The differential scanning calorimeter (DSC) analysis was conducted to understand the effect on glass transition temperature with the inclusion of Graphene (Gr) particles. It has been observed that the reinforced Gr particles act as a thermal reservoir (sink) and enhances its thermal/electrical conductivity. Also, FT-IR spectra realized the structural changes with the inclusion of Gr in ABS matrix. The results are supported by scanning electron microscopy (SEM) based micrographs for understanding the morphological changes.


Sign in / Sign up

Export Citation Format

Share Document