scholarly journals Stochastic transcriptional pulses orchestrate flagellum biosynthesis in E. coli

2018 ◽  
Author(s):  
J. Mark Kim ◽  
Mayra Garcia-Alcala ◽  
Enrique Balleza ◽  
Philippe Cluzel

AbstractThe classic picture of flagellum biosynthesis in E. coli, inferred from population measurements, describes a tightly controlled, deterministic transcriptional program. In individual E. coli cells, we discover that flagellar promoters are in fact stochastically activated in pulses. Such pulses comprise coordinated ‘on’ and ‘off’ states of promoter activity, each of which can span multiple generations. We demonstrate that this pulsing program obeys the regulatory logic of flagellar assembly, which dictates whether some promoters skip pulses. Remarkably, pulses in this transcriptional network appear to be actually governed by a post-translational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.

2020 ◽  
Vol 6 (6) ◽  
pp. eaax0947 ◽  
Author(s):  
J. Mark Kim ◽  
Mayra Garcia-Alcala ◽  
Enrique Balleza ◽  
Philippe Cluzel

The classic picture of flagellum biosynthesis in Escherichia coli, inferred from population measurements, depicts a deterministic program where promoters are sequentially up-regulated and are maintained steadily active throughout exponential growth. However, complex regulatory dynamics at the single-cell level can be masked by bulk measurements. Here, we discover that in individual E. coli cells, flagellar promoters are stochastically activated in pulses. These pulses are coordinated within specific classes of promoters and comprise “on” and “off” states, each of which can span multiple generations. We demonstrate that in this pulsing program, the regulatory logic of flagellar assembly dictates which promoters skip pulses. Surprisingly, pulses do not require specific transcriptional or translational regulation of the flagellar master regulator, FlhDC, but instead appears to be essentially governed by an autonomous posttranslational circuit. Our results suggest that even topologically simple transcriptional networks can generate unexpectedly rich temporal dynamics and phenotypic heterogeneities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Heather S. Deter ◽  
Tahmina Hossain ◽  
Nicholas C. Butzin

AbstractAntibiotic treatment kills a large portion of a population, while a small, tolerant subpopulation survives. Tolerant bacteria disrupt antibiotic efficacy and increase the likelihood that a population gains antibiotic resistance, a growing health concern. We examined how E. coli transcriptional networks changed in response to lethal ampicillin concentrations. We are the first to apply transcriptional regulatory network (TRN) analysis to antibiotic tolerance by leveraging existing knowledge and our transcriptional data. TRN analysis shows that gene expression changes specific to ampicillin treatment are likely caused by specific sigma and transcription factors typically regulated by proteolysis. These results demonstrate that to survive lethal concentration of ampicillin specific regulatory proteins change activity and cause a coordinated transcriptional response that leverages multiple gene systems.


2007 ◽  
Vol 189 (14) ◽  
pp. 5108-5118 ◽  
Author(s):  
Shicheng Chen ◽  
Michael Bagdasarian ◽  
Michael G. Kaufman ◽  
Adam K. Bates ◽  
Edward D. Walker

ABSTRACT Sequences that mediate the initiation of transcription in Flavobacterium species are not well known. The majority of identified Flavobacterium promoter elements show homology to those of other members of the phylum Bacteroidetes, but not of proteobacteria, and they function poorly in Escherichia coli. In order to analyze the Flavobacterium promoter structure systematically, we investigated the −33 consensus element, −7 consensus element, and spacer length of the Flavobacterium ompA promoter by measuring the effects of site-directed mutations on promoter activity. The nonconserved sequences in the spacer region and in regions close to the consensus motifs were randomized in order to determine their importance for promoter activity. Most of the base substitutions in these regions caused large decreases in promoter activity. The optimal −33/−7 motifs (TTTG/TANNTTTG) were identical to Bacteroides fragilis σABfr consensus −33/−7 promoter elements but lacked similarity to the E. coli σ70 promoter elements. The length of the spacer separating the −33 and −7 motifs of the ompA promoter also had a pronounced effect on promoter activity, with 19 bp being optimal. In addition to the consensus promoter elements and spacer length, the GC content of the core promoter sequences had a pronounced effect on Flavobacterium promoter activity. This information was used to conduct a scan of the Flavobacterium johnsoniae and B. fragilis genomes for putative promoters, resulting in 188 hits in B. fragilis and 109 hits in F. johnsoniae.


2018 ◽  
Vol 115 (22) ◽  
pp. E5086-E5095 ◽  
Author(s):  
Liang Xu ◽  
Ye Chen ◽  
Anand Mayakonda ◽  
Lynnette Koh ◽  
Yuk Kien Chong ◽  
...  

Competitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells. dBET6 treatment drastically reduces BET protein genomic occupancy, RNA-Pol2 activity, and permissive chromatin marks. Subsequently, dBET6 represses the proliferation, self-renewal, and tumorigenic ability of GBM cells. Moreover, dBET6-induced degradation of BET proteins exerts superior antiproliferation effects compared to conventional BBIs and overcomes both intrinsic and acquired resistance to BBIs in GBM cells. Our study reveals crucial functions of BET proteins and provides the rationale and therapeutic merits of targeted degradation of BET proteins in GBM.


1997 ◽  
Vol 43 (1) ◽  
pp. 61-69 ◽  
Author(s):  
G. Djordjevic ◽  
B. Bojovic ◽  
N. Miladinov ◽  
L. Topisirovic

Promoter-like sequences from the chromosomal DNA of thermophilic strain Lactobacillus acidophilus ATCC 4356 were cloned. Analysis of the three DNA fragments showing promoter activity, designated P3, P6, and P15, were performed in Lactobacillus reuteri, Lactococcus lactis, and E. coli. The reporter cat-86 gene was expressed in all three bacterial species under control of the fragments P3 and P6. Fragment P15 showed promoter activity only in Lactobacillus reuteri and E. coli but not in Lactococcus lactis. The three host-specific transcriptional start points (TSPs) were used when transcription of the cat-86 gene was controlled by fragment P3 in Lactobacillus reuteri, E. coli, and Lactococcus lactis. Similarly, fragment P15 initiated transcription of the cat-86 gene at two distinctive sites in Lactobacillus reuteri and E. coli. Only within fragment P6, a common TSP was used in Lactobacillus reuteri and E. coli, but different from that used in Lactococcus lactis. Each TSP was preceded by the putative −35 and −10 hexamers. Computer analysis of the fragment P3 sequence revealed the existence of divergent promoterlike sequence (P3rev) located on the complementary DNA strand. Fragments P6 and P15 were also functional in Lactobacillus acidophilus ATCC 4356 from which chromosomal DNA they were originally cloned.Key words: Lactobacillus acidophilus, promoter-like sequences, regulation.


2006 ◽  
Vol 7 (12) ◽  
pp. 969-973
Author(s):  
Andrey Yu Berezhnoy ◽  
Yuriy G. Shckorbatov ◽  
Kiryu Hisanori
Keyword(s):  
E Coli ◽  

Author(s):  
Xiaoming Wang ◽  
Yao Wang ◽  
Zhuoren Ling ◽  
Chaoyang Zhang ◽  
Mingming Fu ◽  
...  

Abstract Background Plasmid-mediated mechanisms of drug resistance accelerate the spread of polymyxin resistance, leaving clinicians with few or no antibacterial options for the treatment of infections caused by MDR bacteria, especially carbapenemase-producing strains. Objectives To evaluate the associations among promoter sequence variation, mcr-1 expression, host factors and levels of colistin resistance and to propose antisense agents such as peptide nucleic acids (PNAs) targeting mcr-1 as a tool to restore colistin susceptibility through modulation of MCR-1 expression in Escherichia coli. Methods A β-galactosidase assay was performed to study mcr-1 promoter activity. Quantitative real-time PCR and western blot assays were used to identify the expression level of MCR-1 in WT strains and transformants. Three PNAs targeting different regions of mcr-1 were designed and synthesized to determine whether they can effectively inhibit MCR-1 expression. MIC was measured to test colistin susceptibility in the presence or absence of PNA-1 in mcr-1-carrying E. coli. Results Variation in the mcr-1 promoter sequence and host species affect promoter activity, MCR-1 expression levels and colistin MICs. One PNA targeting the ribosome-binding site fully inhibited the expression of mcr-1 at a concentration of 4 μM, resulting in significantly increased susceptibility to colistin. The MIC90 of colistin decreased from 8 to 2 mg/L (P < 0.05) in the presence of 4 μM PNA. Conclusions These findings suggest that the antisense approach is a possible strategy to combat mcr-1-mediated resistance as well as other causes of emerging global resistance.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Laura Heinisch ◽  
Katharina Zoric ◽  
Maike Krause ◽  
Herbert Schmidt

ABSTRACT Certain foodborne Shiga toxin-producing Escherichia coli (STEC) strains carry genes encoding the subtilase cytotoxin (SubAB). Although the mode of action of SubAB is under intensive investigation, information about the regulation of subAB gene expression is currently not available. In this study, we investigated the regulation of the chromosomal subAB1 gene in laboratory E. coli strain DH5α and STEC O113:H21 strain TS18/08 using a luciferase reporter gene assay. Special emphasis was given to the role of the global regulatory protein genes hfq and hns in subAB1 promoter activity. Subsequently, quantitative real-time PCR was performed to analyze the expression of Shiga toxin 2a (Stx2a), SubAB1, and cytolethal distending toxin V (Cdt-V) genes in STEC strain TS18/08 and its isogenic hfq and hns deletion mutants. The deletion of hfq led to a significant increase of up to 2-fold in subAB1 expression, especially in the late growth phase, in both strains. However, deletion of hns showed different effects on the promoter activity during the early and late exponential growth phases in both strains. Furthermore, upregulation of stx2a and cdt-V was demonstrated in hfq and hns deletion mutants in TS18/08. These data showed that the expression of subAB1, stx2a, and cdt-V is integrated in the regulatory network of global regulators Hfq and H-NS in Escherichia coli. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of foodborne diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The pathogenicity of those strains can be attributed to, among other factors, the production of toxins. Recently, the subtilase cytotoxin was detected in locus of enterocyte effacement (LEE)-negative STEC, and it was confirmed that it contributes to the cytotoxicity of those STEC strains. Although the mode of action of SubAB1 is under intensive investigation, the regulation of gene expression is currently not known. The global regulatory proteins H-NS and Hfq have impact on many cellular processes and have been described to regulate virulence factors as well. Here, we investigate the role of hns and hfq in expression of subAB1 as well as stx2a and cdt-V in an E. coli laboratory strain as well as in wild-type STEC strain TS18/08.


2007 ◽  
Vol 75 (7) ◽  
pp. 3315-3324 ◽  
Author(s):  
Eric J. Gauger ◽  
Mary P. Leatham ◽  
Regino Mercado-Lubo ◽  
David C. Laux ◽  
Tyrrell Conway ◽  
...  

ABSTRACT Previously, we reported that the mouse intestine selected mutants of Escherichia coli MG1655 that have improved colonizing ability (M. P. Leatham et al., Infect. Immun. 73:8039-8049, 2005). These mutants grew 10 to 20% faster than their parent in mouse cecal mucus in vitro and 15 to 30% faster on several sugars found in the mouse intestine. The mutants were nonmotile and had deletions of various lengths beginning immediately downstream of an IS1 element located within the regulatory region of the flhDC operon, which encodes the master regulator of flagellum biosynthesis, FlhD4C2. Here we show that during intestinal colonization by wild-type E. coli strain MG1655, 45 to 50% of the cells became nonmotile by day 3 after feeding of the strain to mice and between 80 and 90% of the cells were nonmotile by day 15 after feeding. Ten nonmotile mutants isolated from mice were sequenced, and all were found to have flhDC deletions of various lengths. Despite this strong selection, 10 to 20% of the E. coli MG1655 cells remained motile over a 15-day period, suggesting that there is an as-yet-undefined intestinal niche in which motility is an advantage. The deletions appear to be selected in the intestine for two reasons. First, genes unrelated to motility that are normally either directly or indirectly repressed by FlhD4C2 but can contribute to maximum colonizing ability are released from repression. Second, energy normally used to synthesize flagella and turn the flagellar motor is redirected to growth.


2015 ◽  
Vol 143 (15) ◽  
pp. 3244-3255 ◽  
Author(s):  
G. A. C. LAMMERS ◽  
C. S. McCONNEL ◽  
D. JORDAN ◽  
M. S. AYTON ◽  
S. MORRIS ◽  
...  

SUMMARYThis study aims to describe in detail the temporal dynamics ofE. coliO157 shedding and risk factors for shedding in a grass-fed beef herd. During a 9-month period, 23 beef cows were sampled twice a week (58 sampling points) andE. coliO157 was enumerated from faecal samples. Isolates were screened by PCR for presence ofrfbE,stx1andstx2. The prevalence per sampling day ranged from 0% to 57%. This study demonstrates that many members of the herd were concurrently sheddingE. coliO157. Occurrence of rainfall (P< 0·01), feeding silage (P< 0·01) and lactating (P< 0·01) were found to be predictors of shedding. Moving cattle to a new paddock had a negative effect on shedding. This approach, based on short-interval sampling, confirms the known variability of shedding within a herd and highlights that high shedding events are rare.


Sign in / Sign up

Export Citation Format

Share Document