scholarly journals Remodeling of Mycobacterium tuberculosis lipids regulates prpCD during acid growth arrest

2019 ◽  
Author(s):  
Jacob J. Baker ◽  
Robert B. Abramovitch

AbstractMycobacterium tuberculosis (Mtb) establishes a state of non-replicating persistence when it is cultured at acidic pH with glycerol as a sole carbon source. Growth can be restored by spontaneous mutations in the ppe51 gene or supplementation with pyruvate, supporting that acid growth arrests is a genetically controlled, adaptive process and not simply a physiological limitation associated with acidic pH. Transcriptional profiling identified the methylcitrate synthase and methylcitrate dehydratase genes (prpC and prpD, respectively) as being selectively induced during acid growth arrest. prpCD along with isocitrate lyase (icl) enable Mtb to detoxify propionyl-CoA through the methylcitrate cycle. The goal of this study was to examine mechanisms underlying the regulation of prpCD during acid growth arrest. Induction of prpCD during acid growth arrest was reduced when the medium was supplemented with vitamin B12 (which enables an alternative propionate detoxification pathway) and enhanced in an icl mutant (which is required for the propionate detoxification), suggesting that Mtb is responding to elevated levels of propionyl-CoA during acidic growth arrest. We hypothesized that an endogenous source of propionyl-CoA generated during metabolism of methyl-branched lipids may be regulating prpCD. Using Mtb radiolabeled with 14C-propionate or 14C-acetate, it was observed that lipids are remodeled during acid growth arrest, with triacylglycerol being catabolized and sulfolipid and trehalose dimycolate being synthesized. Blocking TAG lipolysis using the lipase inhibitor tetrahydrolipstatin, resulted in enhanced prpC induction during acid growth arrest, suggesting that lipid remodeling may function, in part, to detoxify propionate. Notably, prpC was not induced during acid growth arrest when using lactate instead of glycerol. We propose that metabolism of glycerol at acidic pH may result in the accumulation of propionyl-CoA and that lipid remodeling may function as a detoxification mechanism.ImportanceDuring infection, Mycobacterium tuberculosis (Mtb) colonizes acidic environments, such as the macrophage phagosome and granuloma. Understanding regulatory and metabolic adaptations that occur in response to acidic pH can provide insights int0 mechanisms used by the bacterium to adapt to the host. We have previously shown that Mtb exhibits pH-dependent metabolic adaptations and requires anaplerotic enzymes, such as Icl1/2 and PckA, to grow optimally at acidic pH. Additionally, we have observed that Mtb can only grow on specific carbon sources at acidic pH. Together these findings show that Mtb integrates environmental pH and carbon source to regulate its metabolism. In this study, it is shown that Mtb remodels its lipids and modulates the expression of propionyl-CoA detoxifying genes prpCD when grown on glycerol at acidic pH. This finding suggests that lipid remodeling at acidic pH may contribute to detoxification of propionyl-CoA, by incorporating the metabolite into methyl-branched cell envelope lipids.

2021 ◽  
Author(s):  
Shelby J. Dechow ◽  
Jacob J. Baker ◽  
Megan R. Murto ◽  
Robert B. Abramovitch

In defined media supplemented with single carbon sources, Mycobacterium tuberculosis exhibits carbon source specific growth restriction. When supplied glycerol as the sole carbon source at pH 5.7, Mtb establishes a metabolically active state of nonreplicating persistence known as acid growth arrest. We hypothesized that acidic growth arrest on glycerol is not a metabolic restriction, but rather an adaptive response. To test this hypothesis, we conducted forward genetic screens that identified several Mtb mutants that could grow under these restrictive conditions. All of the mutants were mapped to the ppe51 gene and resulted in three amino acid substitution, S211R, E215K, and A228D. Expression of the PPE51 variants in Mtb promoted growth at acidic pH showing that the mutant alleles are sufficient to cause the dominant gain-of-function, enhanced acid growth (eag) phenotype. Testing growth on other single carbon sources showed the PPE51 variants specifically enhanced growth on glycerol, suggesting ppe51 plays a role in glycerol uptake. Using radiolabeled glycerol, enhanced glycerol uptake was observed in Mtb expressing the PPE51 (S211R) variant, with glycerol overaccumulation in triacylglycerol. Notably, the eag phenotype is deleterious for growth in macrophages, where the mutants have selectively faster replication and reduced in virulence in activated macrophages as compared to resting macrophages. Recombinant PPE51 protein exhibited differential thermostability in the WT or S211R variants in the presence of glycerol, supporting the eag substitutions alter PPE51-glycerol interactions. Together, these findings support that PPE51 variants selectively promote glycerol uptake and that slowed growth at acidic pH is an important adaptive mechanism required for macrophage pathogenesis.


2017 ◽  
Author(s):  
Jacob J. Baker ◽  
Robert B. Abramovitch

AbstractMycobacterium tuberculosis(Mtb) senses and adapts to acidic environments during the course of infection. Acidic pH-dependent adaptations include the induction of metabolic genes associated with anaplerosis and growth arrest on specific carbon sources. In this study, reverse and forward genetic studies were undertaken to define new mechanisms underlying pH-dependent adaptations. Here we report that deletion of isocitrate lyase (icl1/2) or phosphoenolpyruvate carboxykinase (pckA) results in reduced growth at acidic pH and altered metabolite profiles, supporting that remodeling of anaplerotic metabolism is required for pH-dependent adaptation. Mtb cultured at pH 5.7 in minimal medium containing glycerol as a single carbon source exhibits an acid growth arrest phenotype, where the bacterium is non-replicating but viable and metabolically active. The bacterium uptakes and metabolizes glycerol and maintains ATP pools during acid growth arrest and becomes tolerant to detergent stress and the antibiotics isoniazid and rifampin. A forward genetic screen identified mutants that do not arrest their growth at acidic pH, including four enhanced acid growth (eag) mutants with three distinct mutations in the PPE gene MT3221. Overexpression of the MT3221(S211R) variant protein in wild type Mtb results in enhanced acid growth and reduced drug tolerance. Together, these findings provide new evidence for a genetic and physiological basis for acid growth arrest and support that growth arrest is an adaptive process and not simply a physiological limitation associated with acidic pH.Author SummaryThe bacteriumMycobacterium tuberculosis(Mtb) causes the disease tuberculosis in humans. During infection Mtb colonizes a variety of environments that have acidic environments and Mtb must adapt to these environments to cause disease. One of these adaptations is that Mtb slows and arrests its growth at acidic pH, and the goal of this study was to examine the genetics and physiology of these pH-dependent adaptations. We found that Mtb modifies its metabolism at acidic pH and that these adaptations are required for optimal growth. We also found that acidic pH and specific nutrient sources can promote the bacterium to enter a state of dormancy, called acid growth arrest, where the bacterium becomes tolerant to antibiotics. Mutants were identified that do not arrest their growth at acidic, revealing that acid growth arrest is a genetically controlled process. Overall, understanding how Mtb adapts to acidic pH has revealed pathway that are required for virulence and drug tolerance and thus may identify new targets for drug development that may function to shorten the course of TB therapy.


2010 ◽  
Vol 432 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Keiji Mitsui ◽  
Masafumi Matsushita ◽  
Hiroshi Kanazawa

Organelle-localized NHEs (Na+/H+ exchangers) are found in cells from yeast to humans and contribute to organellar pH regulation by exporting H+ from the lumen to the cytosol coupled to an H+ gradient established by vacuolar H+-ATPase. The mechanisms underlying the regulation of organellar NHEs are largely unknown. In the present study, a yeast two-hybrid assay identified Mth1p as a new binding protein for Nhx1p, an organellar NHE in Saccharomyces cerevisiae. It was shown by an in vitro pull-down assay that Mth1p bound to the hydrophilic C-terminal half of Nhx1p, especially to the central portion of this region. Mth1p is known to bind to the cytoplasmic domain of the glucose sensor Snf3p/Rgt2p and also functions as a negative transcriptional regulator. Mth1p was expressed in cells grown in a medium containing galactose, but was lost (possibly degraded) when cells were grown in medium containing glucose as the sole carbon source. Deletion of the MTH1 gene increased cell growth compared with the wild-type when cells were grown in a medium containing galactose and with hygromycin or at an acidic pH. This resistance to hygromycin or acidic conditions was not observed for cells grown with glucose as the sole carbon source. Gene knockout of NHX1 increased the sensitivity to hygromycin and acidic pH. The increased resistance to hygromycin was reproduced by truncation of the Mth1p-binding region in Nhx1p. These results implicate Mth1p as a novel regulator of Nhx1p that responds to specific extracellular carbon sources.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael C. Lorenz

ABSTRACTMost microorganisms maintain strict control of nutrient assimilation pathways to ensure that they preferentially use compounds that generate the most energy or are most efficiently catabolized. In doing so, they avoid potentially inefficient conflicts between parallel catabolic and metabolic pathways. The regulation of carbon source utilization in a wide array of bacterial and fungal species involves both transcriptional and posttranscriptional mechanisms, and while the details can vary significantly, carbon catabolite control is widely conserved. In many fungi, the posttranslational aspect (carbon catabolite inactivation [CCI]) involves the ubiquitin-mediated degradation of catabolic enzymes for poor carbon sources when a preferred one (glucose) becomes available. A recent article presents evidence for a surprising exception to CCI in the fungal pathogenCandida albicans, an organism that makes use of gluconeogenic carbon sources during infection (D. Sandai, Z. Yin, L. Selway, D. Stead, J. Walker, M. D. Leach, I. Bohovych, I. V. Ene, S. Kastora, S. Budge, C. A. Munro, F. C. Odds, N. A. Gow, and A. J. Brown,mBio3[6]:e00495-12).In vitro, addition of glucose to cells grown in a poor carbon source rapidly represses transcripts encoding gluconeogenic and glyoxylate cycle enzymes, such as phosphoenolpyruvate carboxykinase (Pck1p) and isocitrate lyase (Icl1p), in bothC. albicansandSaccharomyces cerevisiae. Yet, uniquely, theC. albicansproteins persist, permitting parallel assimilation of multiple carbon sources, likely because they lack consensus ubiquitination sites found in the yeast homologs. Indeed, the yeast proteins are rapidly degraded when expressed inC. albicans, indicating a conservation of the machinery needed for CCI. How this surprising metabolic twist contributes to fungal commensalism or pathogenesis remains an open question.


2021 ◽  
Vol 118 (32) ◽  
pp. e2024571118
Author(s):  
Alexandre Gouzy ◽  
Claire Healy ◽  
Katherine A. Black ◽  
Kyu Y. Rhee ◽  
Sabine Ehrt

Acidic pH arrests the growth of Mycobacterium tuberculosis in vitro (pH < 5.8) and is thought to significantly contribute to the ability of macrophages to control M. tuberculosis replication. However, this pathogen has been shown to survive and even slowly replicate within macrophage phagolysosomes (pH 4.5 to 5) [M. S. Gomes et al., Infect. Immun. 67, 3199–3206 (1999)] [S. Levitte et al., Cell Host Microbe 20, 250–258 (2016)]. Here, we demonstrate that M. tuberculosis can grow at acidic pH, as low as pH 4.5, in the presence of host-relevant lipids. We show that lack of phosphoenolpyruvate carboxykinase and isocitrate lyase, two enzymes necessary for lipid assimilation, is cidal to M. tuberculosis in the presence of oleic acid at acidic pH. Metabolomic analysis revealed that M. tuberculosis responds to acidic pH by altering its metabolism to preferentially assimilate lipids such as oleic acid over carbohydrates such as glycerol. We show that the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is impaired in acid-exposed M. tuberculosis likely contributing to a reduction in glycolytic flux. The generation of endogenous reactive oxygen species at acidic pH is consistent with the inhibition of GAPDH, an enzyme well-known to be sensitive to oxidation. This work shows that M. tuberculosis alters its carbon diet in response to pH and provides a greater understanding of the physiology of this pathogen during acid stress.


Author(s):  
Kavitha K ◽  
Asha S ◽  
Hima Bindu T.V.L ◽  
Vidyavathi M

The safety and efficacy of a drug is based on its metabolism or metabolite formed. The metabolism of drugs can be studied by different in vitro models, among which microbial model became popular. In the present study, eight microbes were screened for their ability to metabolize phenobarbital in a manner comparable to humans with a model to develop alternative systems to study human drug metabolism. Among the different microbes screened, a filamentous fungi Rhizopus stolonifer metabolized phenobarbital to its metabolite which is used for further pharmacological and toxicological studies. The transformation of phenobarbital was identified by high- performance liquid chromatography (HPLC). Interestingly, Rhizopus stolonifer sample showed an extra metabolite peak at 3.11min. compared to its controls. The influence of different carbon sources in media used for growth of fungus, on metabolite production was studied, to find its effect in production of metabolite as the carbon source may influence the growth of the cell.


2020 ◽  
Vol 14 (1) ◽  
pp. 14-29
Author(s):  
Manish Dwivedi

Scientific interest in mycobacteria has been sparked by the medical importance of Mycobacterium tuberculosis (Mtb) that is known to cause severe diseases in mammals, i.e. tuberculosis and by properties that distinguish them from other microorganisms which are notoriously difficult to treat. The treatment of their infections is difficult because mycobacteria fortify themselves with a thick impermeable cell envelope. Channel and transporter proteins are among the crucial adaptations of Mycobacterium that facilitate their strength to combat against host immune system and anti-tuberculosis drugs. In previous studies, it was investigated that some of the channel proteins contribute to the overall antibiotic resistance in Mtb. Moreover, in some of the cases, membrane proteins were found responsible for virulence of these pathogens. Given the ability of M. tuberculosis to survive as an intracellular pathogen and its inclination to develop resistance to the prevailing anti-tuberculosis drugs, its treatment requires new approaches and optimization of anti-TB drugs and investigation of new targets are needed for their potential in clinical usage. Therefore, it is imperative to investigate the survival of Mtb. in stressed conditions with different behavior of particular channel/ transporter proteins. Comprehensive understanding of channel proteins and their mechanism will provide us direction to find out preventive measures against the emergence of resistance and reduce the duration of the treatment, eventually leading to plausible eradication of tuberculosis.


Processes ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1306
Author(s):  
Pedro Almeida ◽  
Laurent Dewasme ◽  
Alain Vande Wouwer

The recirculating aquaculture system (RAS) is a land-based water treatment technology, which allows for farming aquatic organisms, such as fish, by reusing the water in the production (often less than 5%). This technology is based on the use of filters, either mechanical or biological, and can, in principle, be used for any species grown in aquaculture. Due to the low recirculation rate, ammonia accumulates in the system and must be converted into nitrate using nitrification reactors. Although less toxic for fish, nitrate can also be further reduced into nitrogen gas by the use of denitrification biofilters which may create several issues, such as incomplete denitrification, resulting in toxic substances, such as nitrite and nitric oxide, or a waste of carbon source in excess. Control of the added quantity of carbon source in the denitrification biofilter is then mandatory to keep nitrate/nitrite concentrations under toxic levels for fish and in accordance with local effluent regulations, and to reduce costs related to wasted organic carbon sources. This study therefore investigates the application of different control methodologies to a denitrification reactor in a RAS. To this end, a numerical simulator is built to predict the RAS behavior and to allow for the comparison of different control approaches, in the presence of changes in the operating conditions, such as fish density and biofilter removal efficiency. First, a classical proportional-integral-derivative (PID) controller was designed, based on an SIMC tuning method depending on the amount of ammonia excreted by fish. Then, linearizing and cascade controllers were considered as possible alternatives.


Sign in / Sign up

Export Citation Format

Share Document